

REVISTA MENSUAL ILUSTRADA

- A El dibujo en sus aplicaciones prácticas &
 - en las artes. + + +
 - oficios e industrias, + +
 - talleres, hogares y escuelas +

IMPRENTA DEL UNIVERSO

Guillermo Helfmann

STO. DOMINGO, ESQUINA DE CHACABUCO

SANTIAGO

CASILLA :647 * TELÉFONO 1724

ES PROPIEDAD.

308-2

IRL HRAPE INDUSTRIBIL

REVISTA MENSUAL ILUSTRADA

sobre las aplicaciones prácticas del dibujo en las industrias en jeneral, talleres, escuelas i hogares

COLABORADORES:

Pedro E. Wielandt, Injeniero del Plano de Santiago.

Federico Thum, ARQUITECTO, INJENIERO I PROFESOR DE DIBUJO EN EL INSTITUTO NACIONAL

Manuel Tulaud, Secretario de la Direccion de Orras MUNICIPALES.

A. del Valle, Profesor de Dibujo de Máquinas en la ESCUELA DE ARTES I OFICIOS.

Aquilino Garcia, Profesor de Dibujo Ornamental en la ESCUELA DE ABTES I OFICIOS I DIBUJANTE DE LA DIRECCION DE OBRAS PÚBLICAS.

Carlos Lacoste, JEFE DE LA SECCION DE MECÂNICA DE LA ESCUELA DE ARTES I OFICIOS.

Isaias Aguila, Arquirecto.

Alfredo Gacitúa, Injeniero de La Direccion de Obras

Srta. Virjinia Alvarez, Profesora De Dinuso.

Lautaro Ponce, Doctor,

Luis Felipe Lazo, Injeniero de La Dirección de Onras

Ramon Laval, Secretario de la Biblioteca Nacional i PROFESOR DE CALIGRAFÍA DE VARIOS LICEOS I COLEJIOS.

Alberto Guzman, JEFE DE LA IMPRENTA DE LOS FERRO-CARRILES DEL ESTADO.

Agustin Palma Riesco, Jefe del Salon de Lectura de LA BIBLIOTECA NACIONAL.

Heraclio Fernandez, Director DE "EL CHILENO."

Luis A. Silva, Profesor de Matemáticas y Director de LA REVISTA DE MATEMÁTICAS.

Erasmo Arellano D., Profesor Secretario i Jerente de "LA EDUCACION NACIONAL."

Pedro A. Vazquez, ARQUITECTO I PROFESOR EN LA ESCUELA DE ARTES I OFICIOS.

Miguel R. Machado, Químico DE LA DIRECCION DE OBRAS Públicas 1 Jefe de mineralojía del Museo Nacional.

Aage G. Hald, Jeff de la sección Electricidad de la Escuela de Artes i Opicios.

Toda correspondencia, suscriciones, pedidos de números suestos, etc., etc., dirijase al Administrador de El Arte Industrial, Imprenta del Universo, Santiago.—Casilla 1647.

Para vestir con elegancia i economia debe Ud. mandar hacer su ropa a la

SASTRERIA

> MARCO AURELIO TAPIA

SAN DIEGO

ESQUINA A LA DE INSTITUTO

El mejor preservativo contra las infecciones del cuero cabe-

Aprobada por los mas distinguidos facultativos.

Hermosea, perfuma i tonifica el cabello, evita su caida i mata

Carpiquina

del Dr. Borrell

(Exíjase la lejítima)

BOTICAS, DROGUERÍAS Y PERFUMERÍAS

COMPTOIR DE LA COSTA DEL PACÍFICO

ALMACEN DE MAQUINAS

San Antonio, 355 + SANTIAGO + Teléfono Inglés 996

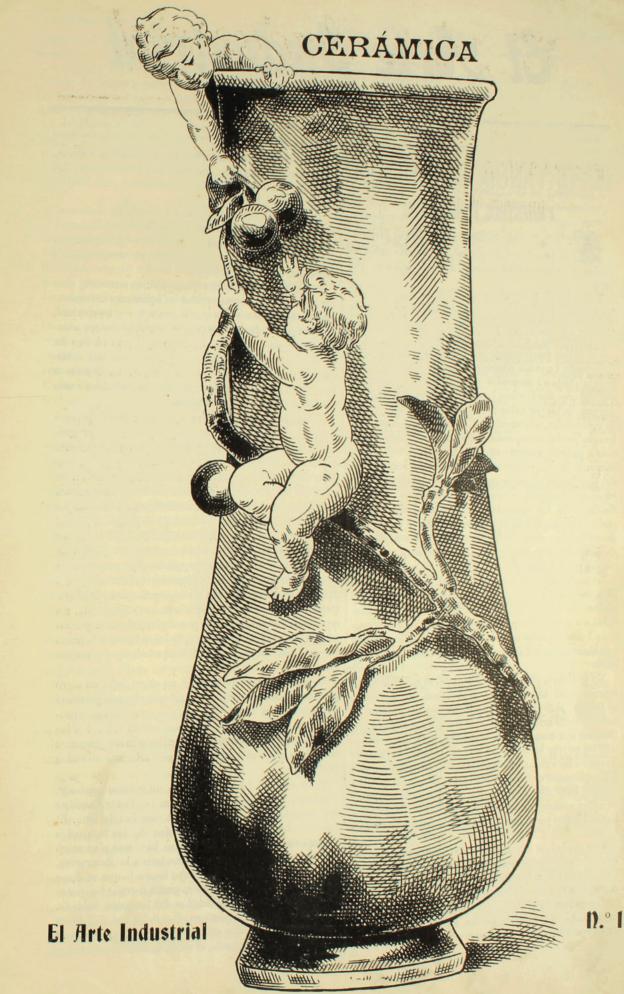
Dinamos i Motores Eléctricos.

Maquinas para Molinos de los mejores Constructores, Telas de Seda i Metálicas, surtido completo.

Correas de Cuero, Cañamo i Algodon.

Cemento Portland, Marca LEON. Aceites Lubricantes, Grasa, Gmfito, etc. Turbinas SIMPLEX de gran rendimiento

Papeles para injenieros, etc., etc.


Heiremans i Ca.

Gran Torneria a Vapor

ÚNICA CASA ESCLUSIVA Julio Tixier

CASILLA 4

El Arte Industrial

REVISTA MENSUAL ILUSTRADA

Año I

Santiago de Chile, 1.º de Diciembre de 1904.

N.º 1

IMPORTANCIA DEL DIBUJO

I NUESTROS PROPÓSITOS

de la industria universal, han abierto todas las naciones civilizadas las puertas de sus celejios de par en par.

Todos los pueblos cultos i amantes de las artes i de las industrias reconocen su trascendental importancia i el poderoso influjo que este ramo ejerce en la vida científica, comercial i artística de cada nacion.

Así lo han comprendido los paises mas adelantados del mundo, i que hoi rivalizan por dar facilidad i abrir nuevos rumbos i mercados a los millares de artículos que elaboran sus fábricas i que se desparraman en grandes cantidades por todas las rejiones del globo, dando en sus escuelas, a la enseñanza del Dibujo, el lugar preferente que le corresponde i prestándole la mayor atencion a su cultivo entre todos los ramos escolares. Estas naciones que así comprenden el valor i la importancia del Dibujo aplicado a las industrias, no podrán esperar jamas que sus artículos puedan ser derrotados por otros similares en los mercados estranjeros donde llegan, porque siempre llevarán impreso un nuevo signo, una nueva belleza, un nuevo encanto que los hacen dignos de distincion i, de consiguiente, de merecer la preferencia del público consumidor.

Lo cual nos prueba ademas que, sin el cultivo atento i constante del Dibujo, tan indispensable en todos los oficios, no se consigue jamas formar esos operarios hábiles e intelijentes que nos deslumbran con sus inventivas i encantadoras novedades artísticas en los objetos que abarcan las mil industrias de los paises manufactureros.

No se tienen, pues, esos mecánicos, ni mueblistas, ni cerrajeros, ni zapateros, ni hojalateros, ni tejedores, ni sastres, ni modistas, ni sombrereros, ni pintores ni esos otros mil artesanos que saben dar a los objetos que fabrican con unos mismos elementos, los nuevos encantos, las nuevas bellezas, los nuevos rasgos, las nuevas líneas en las infinitas formas que se consigue por una feliz aplicación del maravilloso arte del dibujo, que tan elevado lugar hace ocupar a los productos elaborados en aquellas naciones que cuidaron que la escuela desarrollara el gusto por el cultivo del Dibujo entre sus futuros obreros.

I en verdad, el dibujo, ha dicho un reputado profesor, es el alma de varios ramos del Comercio; es el que hace dar preferencia a las industrias de una nacion; el que centuplica el valor de las materias primas.

Los paños, la platería, las alhajas, la porcelana, las tapicerías i en jeneral, todos los oficios relativos a las artes operan con sus principios.

Las obras maestras, cuya vista tanto nos recrean, como son las estátuas, los palacios, los cuadros, los adornos, etc., son ejecutados por artistas mui hábiles en el dibujo.

Desde los primeros tiempos del mundo se dedicaron algunos hombres a modelar objetos de barro i de metal, i desde entónces gustaron ya de adornar con figuras las mesas, las sillas i demas objetos de su uso, especialmente las sortijas i las joyas.

Los puntales de madera que sostenian antes sus chozas rústicas fueron convertidos en bellísimas columnas; las cabezas de las vigas que formaban un tosco alero, fueron convertidas poco a poco en cornizas i otros adornos hermosos i sencillos; i todo lo antiguo i rústico ha ido trasformándose mediante la aplicacion de este sublime arte que, acompañado de la pintura, ha llegado a imitar con la mayor perfeccion las innumerables i maravillosas obras de la naturaleza.

El estudio del dibujo es, pues, de la mayor importancia, i el dia en que este ramo ocupe en nuestros programas de enseñanza el lugar preferente que en las naciones mas adelantadas del globo se le señala, el pais i la mavoría de la sociedad notarán una verdadera reaccion, un poderoso impulso que la práctica del dibujo comunicará al mejoramiento individual, a la abolicion de esos añejos ornamentos de las casas i vestidos i al progreso jeneral de las artes nacionales. La enseñanza oficial habrá así cumplido con su deber, dando á la patria un ejército de hábiles, intelijentes i bien preparados obreros para cada ramo de las artes, de las industrias i del comercio, i nuestros artesanos dejarán ya de ser simples oficiales o maestros de banco sin iniciativas, sin inventivas, sin creaciones propias, pasando, por el contrario, a ocupar los puestos de jefes o directores de los talleres o fábricas que hoi en su mayoría están desempeñados por maestros estranjeros.

El poseer el arte de dibujar no es un lujo, un mero pasatiempo como todavía lo consideran algunas personas que desconocen la utilidad práctica que este ramo proporciona al artesano en la lucha por la vida, i a los hombres que se dedican a los estudios e investigaciones científicas para el mejor desempeño de sus elevadas profesiones.

El estudio del dibujo, ha dicho un célebre profesor, es el medio mas eficaz de educacion i el factor i ausiliar mas importante de la cultura, de la ciencia i del arte. El facilita ademas el completo cultivo de las facultades perceptivas i analíticas, i por último, hace mas placentero i atractivo el sendero que nos conduce a la ilustracion. Proporciona al hombre un nuevo lenguaje que se dirije a los ojos i que, muchas veces, puede correjir las malas interpretaciones i ambigüedades del lenguaje hablado. De donde se desprende que el estudio del dibujo es igualmente útil al rico como al pobre; tan necesario al hacendado, al majistrado, al médico, como lo es indis-

pensable al mecánico, al mueblista, al cerrajero i demas artesanos.

Así, pues, lo han comprendido ya los hombres dirijentes de nuestra instruccion, i desde hace tiempo vemos con placer que esa apatía, esa ignorancia, el desprecio i la hostilidad que ántes se oponian a su cultivo, hoi desaparecen ahuyentados ante la luz de la esperiencia, i el dibujo va gradualmente ganando terreno i, con paso firme, penetra ya en el recinto de todos nuestros establecimientos de enseñanza.

TT.

Nuestros propósitos al editar la presente Revista, la primera de su jénero que ve la luz pública en nuestro pais, es la de servir siquiera con un grano de arena al levantamiento del colosal edificio de las artes nacionales que se proponen elevar en nuestro suelo los hombres amantes de la prosperidad i grandeza de la patria.

Las modestas columnas de nuestra Revista están destinadas especialmente a proporcionar a nuestros compatriotas toda clase de conocimientos útiles; las nociones claras i concisas i modelos del arte aplicado a los diferentes objetos que abarcan las profesiones e industrias. Cada obrero encontrará siempre algo nuevo, útil e importante que aplicar a la práctica de sus obras.

Si a un pintor de letras, por ejemplo, se le pide la confeccion de un rótulo para zapatería o librería, etc., en nuestra Revista encontrará, si es constante suscritor, diferentes clases de estilos de caractéres modernos i los escudos correspondientes que sirven de emblema a aquellos establecimientos, que son dibujos de figuras hermosisimas, armoniosamente combinadas que adornan su trabajo, dándole mayor mérito, i de consiguiente produciéndole mayor utilidad pecuniaria.

Igual cosa sucederá a cualquier otro operario que busque los elementos que hoi no tiene, sino por mucho precio, para llevar a cabo con perfeccion las obras que se le encomienden concernientes al ramo de su profesion. En fin, cada obrero encontrará al lado de conocimientos utilísimos tan necesarios en la vida diaria, hermosos modelos que imitar que le excitarán el gusto por inventar otros nuevos; la mayoría de ellos irán acompañados de esplicaciones claras i concisas en el testo.

En este primer número de nuestra Revista, como en todos los subsiguientes, las primeras pájinas las llenarán modelos (con los que se llegará a formar un testo), que pueden servir de tema a los profesores para la práctica de esta enseñanza; las otras pájinas llevarán modelos de figuras de fácil e injeniosa aplicacion a las diferentes artes e industrias.

Nuestros lectores estrañarán al encontrar al lado de los principios elementales mas fáciles otros mas difíciles; al lado de figuras ejecutadas con simples líneas, otras con rasgos i rudas combinaciones, etc., etc.

Pero al hacerlo así nosotros, hemos tenido en vista: 1.º Que los primeros ejercicios servirán solo a los principiantes; i

2.º Que las demas figuras pueden ser aprovechadas por las personas familiarizadas con el arte.

De este modo serviremos entónces a todos en jeneral: a los que saben i a los que no saben; i nuestra Revista, siguiendo este sistema desde su primer número, prestará

tambien, desde el primer dia de su fundacion, toda la utilidad que es menester.

En sus primeros pasos, los horizontes que abarcará nuestra Revista serán modestos, estrechos i limitados, pero a medida que el público vaya prestándole su proteccion i el tiempo vaya trascurriendo, con él irá ensanchándose poco a poco, dilatándose mas i mas, hasta llegar a abarcar i reproducir en sus ántes modestas columnas, las maravillas creadas por los jenios, las obras inmortales de los maestros del arte.

Ahora, lo único que necesitamos es la proteccion i buena acojida que nos dispense el público, especialmente los maestros de la infancia i los obreros en jeneral: pues que a ellos va dedicada nuestra Revista, a fin de que ella salve todos los obstáculos para seguir una marcha próspera, feliz, paseándose triunfadora del uno al otro estremo de nuestra patria i vaya enriqueciendo las bibliotecas escolares i particulares i los talleres modestos de todos los obreros del pais, hasta llegar a conquistar la anhelada gloria para las artes i las industrias nacionales.

Con el presente trabajo no nos guia la idea del lucro, sino la de servir a la juventud que se educa; a los hombres que trabajan i que carecen de una obra semejante; a los que aman las ciencias i las artes, el comercio i las industrias; en una palabra: la idea de servir a nuestros conciudadanos en todas sus esferas sociales con nuestra pobre i modesta intelijencia, pero si, con nuestra inquebrantable i decidida buena voluntad.

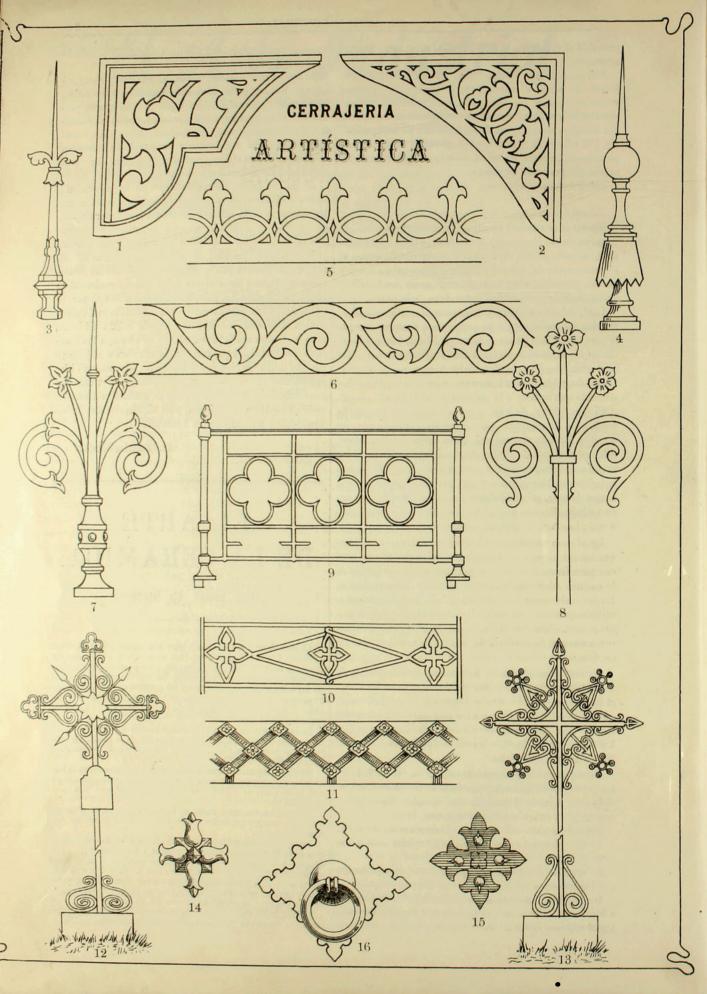
R. Tapia Rojas

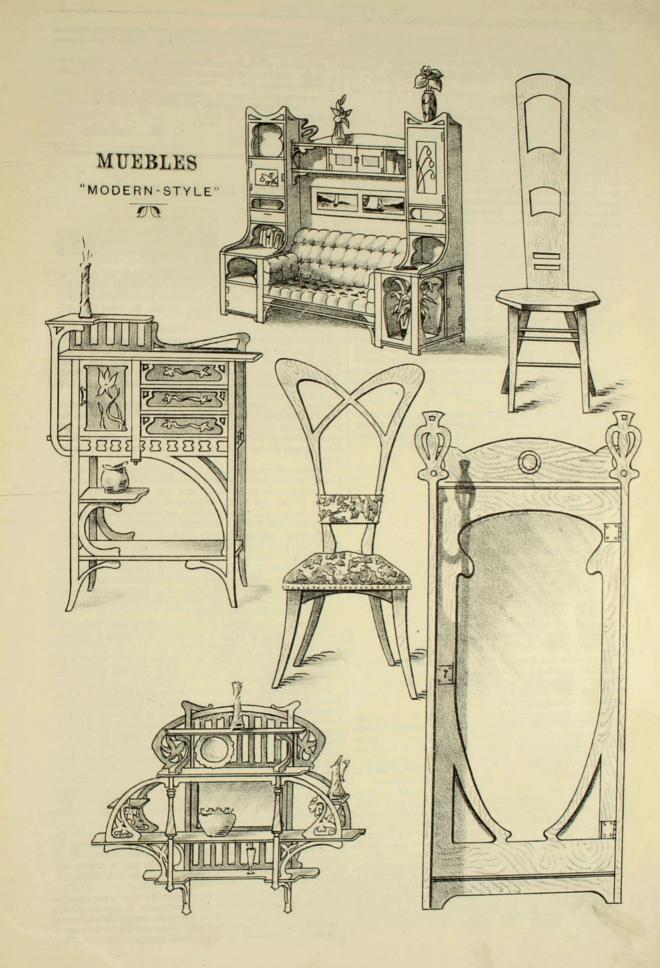
Santiago, 1904.

EL ARTE DE LA CERÁMICA.

ALGO SOBRE SU HISTORIA. *

La abundancia de los materiales necesarios a la fabricación cerámica i la facilidad de estraerlos, de arreglarlos, de darles sin aparatos de arte o de ciencia formas, ornamentos i colores convenientes a su destino, han hecho de ella el primer comienzo de las artes e industrias en todos los pueblos del mundo, constituyendo la elaboración de ollas de tierra, secadas al sol o cocidas al horno, una de las primeras invenciones de la industria humana, como dice Platon.


La etimolojía de la palabra cerámica, del griego keramikos, de keramos, nos manifiesta su derivación de la palabra griega "cuerno," la primera forma de vaso que emplearon los antiguos para beber.


En efecto, en los tiempos primitivos se empleaban para la bebida los cuernos de bovinos, ya sencillos—al principio—luego con toda clase de adornos, cortados en mitad, con una base agregada, etc.

Aunque despues estos vasos se hicieron de las mas diversas materias, siempre quedaron con la denominación griega de ke-

ramos-"cuerno. Las aplicaciones de la cerámica moderna a los usos de la cocina eran desconocidas entre los griegos i los romanos. En las escenas de la vida doméstica, pintados o esculpidos en los mo-numentos antiguos, se encuentran vasos i platos destinados a varios usos, para recibir ofrendas, contener flores, frutas, perfumes; pero no se han encontrado todavía vasos antiguos destinados a calentar los líquidos i a cocer los alimentos. El débil grado de coccion de la cerámica antigua la hacia per-

meable e impropia para contener i guardar liquidos sutiles i

sustancias fuertes. Se podían servir de ella para beber un líquido recien vaciado, pero al cabo de diez horas el agua pura había atravesado el jarro i caia gota a gota como a traves de un filtro. Las esencias olorosas i las materias grasas embebian los poros de la pasta i brotaban por afuera. Cuando se queria usar los vasos en otros usos era casi imposible limpiar la grasa i quitar el olor pegado a ellos.

Los jarros i ollas romanos, mas compactos i mas cocidos que los griegos, ejipcios i etruscos, fueron empleados con mas ventaja en muchos otros usos; pero su permeabilidad—defecto capital de las cerámicas antiguas—impedia sus servicios en las necesidades de la vida doméstica.

Los únicos vasos de tierra secados al sol o cocidos al horno en uso entre los antiguos, son las lámparas de aceite, las ánforas, las copas para licores, los azafates para frutas i las urnas para conservar las cenizas de los muertos. Todavia estos productos eran—en su mayor parte—destinados a servir de objetos de lujo en los palacios de los ricos o de ornamentos sagrados en los sepúlcros.

Los vasos pintados o esculpidos eran aun el premio que se adjudicaba a los vencedores en las carreras de carros o de caballos i otros juegos públicos en las ciudades de Corinto, Elea, Agrigente, Perusa i Menfis; objetos de recuerdo cambiados entre huéspedes ilustres i poderosos, i la manifestacion de la mas alta distincion de los soberanos.

Poetas e historiadores nos han contado los elojios de los contemporáneos sobre el vaso de Nestor, el de Prusias i el de Seleuco, que se hicieron tan célebres en el mundo antiguo.

Los sepúlcros de todos los antiguos pueblos esparcidos en toda la superficie del globo, escandinavos, célticos, eslavos, galos, griegos, oscos, etruscos, persas, indios, chinos, mejicanos i peruanos, encierran vasos de tierra cocida, mate o barnizada, cubiertos de ornamentos, signos jeroglíficos, imájenes o inscripciones que tienen rasgos de las costumbres, de la historia i de la relijion de esas comarcas.

Segun los resultados de los últimos descubrimientos, se puede distinguir la historia de las artes cerámicas en dieziocho épocas distintas, que señalan otras tantas fechas en el progreso de esta importante industria. Estas épocas son las siguientes:

I.—Epoca China (2,600 años a. de J. C.). II.—Epoca Asiria (2,122). III.—Época Ejipcia. IV.—Epoca Osca (1,500). V.—Epoca Etrusca (1,301). VI.—Época Griega (1,200). VII.—Epoca Romana (715). VIII.—Época Italo-Griega (500). IX.—Epoca Céltica (100) X.—Epoca Americana (Año I despues de J. C.) XI.—Epoca Galo-Romana (250). XII.—Época Arabe (711). XIII.—Epoca Italiana (1,415). XIV.—Epoca Alemana (1,550). XV.—Epoca Francesa (1,547). XVI.—Epoca Sajona (1,706). XVII.—Epoca Inglesa (1,730). XVIII.—Epoca Moderna (1,830).

En estas distintas épocas, a traves de tantos años, el arte industrial de la cerámica camina paso a paso tras su perfeccionamiento. Cada lapso de tiempo señala una etapa de progreso hasta llegar a los principios del siglo pasado en que se inicia la época moderna.

Entonces se introduce el *kaolín* en la pasta de las porcelanas i se da mas dureza a los barnices. Todos los elementos de la buena fabricación son encontrados, discutidos públicamente i llevados a la práctica en todos los paises en donde hai manufacturas.

En Francia e Inglaterra se ocupan con especial cuidado de la elegancia de la forma, de la pureza i brillo de los colores.

La manufactura de Sevres, fundada en 1774, i desde ese tiempo mantenida a costa del Estado, aporta grandes perfeccionamientos en la preparación de las pastas i en el mecanismo del modelaje, en los dibujos de sus estampas, lo mismo que en las impresiones. La corrección de los modelos i la finura de las decoraciones hacen de ella la primera fábrica de porcelana de Europa.

Monsieur Deck encuentra los colores de la loza de Bernardo de Palissy, i renueva el procedimiento de la loza incrustada i esmaltada, llamada de Enrique II.

El carácter de la fabricación contemporánea consiste en no tener ningun carácter especial. Se ensaya todo, se imita todo: lo griego, lo etrusco, la edad media, el renacimiento, lo ejipcio, la sajonia, lo italiano.

En lugar de guardar los secretos de fabricación, los gobiernos, mejor avisados, se apresuran a publicarlos i a ponerlos al alcance de todo el mundo.

Despues de este breve resúmen histórico, nos ocuparemos, en artículos sucesivos, del importante tema de la cerámica, tratando de su técnica.

Por ahora sólo damos en nuestra primera pájina un modelo de jarron, de factura francesa, premiado en una de las últimas esposiciones de Paris.

M. Tulaud.

HERRERIA I CERRAJERIA ARTÍSTICA.

Los progresos cada vez mayor en los medios de la producción del hierro, hacen que este importante elemento de la industria, venga de dia en dia reemplazando a la madera en la edificación ordinaria.

La cerrajería biencultivada—lo que se consigue por medio de la difusion del dibujo entre los operarios de este arte, como sucede en todos los oficios,—es uno de los ramos mas importantes que hoi tiene su aplicacion práctica en todas las construcciones modernas.

Las obras de hierro son mui hermosas i mui sólidas, i su costo es casi igual a la madera i a otros materiales inferiores; condiciones son estas importantísimas que hoi se toman cada dia mas en cuenta, lo que hace que este elemento sea factor indispensable i llegará a ser casi el único que se emplee con el tiempo en las construcciones de las grandes obras que se levantan con el progreso de los pueblos.

Hoi damos a nuestros lectores una pájina con modelos escojidos de objetos de herrería artística, fabricados al gusto del dia i en los cuales va reunida la solidez i la belleza. Creemos que estos modelos podrán servir a nuestros obreros para ajustar a ellos algunos de los trabajos que se les encomiendan diariamente.

Si nuestra Revista sigue una marcha próspera, lo que no dudamos, daremos con todo método varios modelos sobre un mismo objeto de cada arte u oficio, para que así nuestros obreros puedan formar una buena coleccion de cada uno de ellos, que tendrán siempre a la vista para dar a sus obras nuevas elegantes i hermosas combinaciones artísticas.

Ménsulas o palomillas.—Son las figuras 1 i 2.—Estas piezas tienen por objeto servir de apoyo o soporte a voladizos, techos, faroles, vigas, emblemas, etc. Jeneralmente se hacen de palastro grueso recortado, formando adornos, i guarnecido de pletinos remachados para darle solidez; otras veces se hace de varilla o cuadradillo plegado, doblado i encorvado, siguiendo las formas del dibujo, enlazándose en sus vueltas, etc. Hai muchos jéneros i disposiciones sobre estos trabajos.

Crestería.—Las figuras 5 i 6 representan estas piezas. Se elaboran con tiras de palastro recortadas en festones i adornos que suelen colocarse colgando o como flecos en el canto i bordes de los aleros de los tejados, marquesinas, etc., sujetándose por medio de clavos o tornillos. Estos adornos embellecen muchos los edificios por su sencillez i elegancia.

Remates.—Con este nombre se designan a las figuras 3 i 4. Estas piezas se colocan en los puntos mas elevados de las construcciones de hierro, sobre todo si terminan en punta. Los primeros tienen colocacion en todas las construcciones de esta clase, pero los últimos se emplean especialmente en las construcciones relijiosas; son especie de cruces mas o ménos adornadas (figuras 7 i 8). Fuera de esta clase de remates existen otros mui difíciles i caprichosos, que se colocan en las obras de construcciones elegantes en armonía con la ornamentacion jeneral de la obra. Estos adornos se forman jeneralmente de varias piezas, que se encorvan i trabajan por separado, combinándolas o reuniéndolas despues por medio de redoblones, haciéndose así mas fácil su elaboracion.

Herrajes.—Los dibujos N.ºs 14 i 15 son herrajes o clavos, i los mas sencillos entre las diferentes clases que se fabrican de estos adornos. Se sujetan por medio de un tornillo que lleva al esterior una cabeza labrada, i atravesando por el centro del adorno se sujeta interiormente por medio de una tuerca que entra en su estremidad atenazada.

Cruces.—Las figuras 12 i 13 representan dos clases de cruces que pueden colocarse en puntos elevados de construcciones relijiosas o sobre sepulturas en los cementerios, fijándolos en estos últimos sitios sobre dados de piedra por medio de espigas de emplomadas, como se figuran en la lámina.

Antepechos, barandilla, balcones.—Cuando un hueco de ventana tiene el alfeizar algo bajo, suele levantarse por medio de una valla, que se coloca empotrada en el muro por la parte esterior de los cierres o vidrieras; esta valla recibe el nombre de antepecho (fig. 11) i se forma por un tejido o combinacion de tuercas, varillas, etc., enlazadas entre sí por medio de redo-

Cuando se trata de rodear o defender con un obstáculo un objeto, estátua o fuente, etc., se rodea de un tejido metálico que puede ser alto, en cuyo caso lleva el nombre de verja, i si es baja recibe entónces el nombre de barandilla (fig. 10). Estas obras están sujetas por pasamanos en la parte superior; la parte inferior de estos balaustres descansa i se remacha en una solera que se sujeta por varios puntos con plomo al friso o zócalo de piedra que sirve de base.

La figura 9 representa un balcon antepechado de los mas sencillos, pues hai de tres clases: antepechados, volados i corridos; en nuestros próximos números daremos algunos modelos de estos últimos. Sabido es que todos los balcones están destinados a oponer un obstáculo en los huecos de las fachadas de los edificios para evitar una caida al asomarse.

Manillas o tiradores (Figura núm. 16).—Estas piecesitas son tan comunes que nos parece demás dar aquí una descripcion detallada; creemos suficiente insertar solo uno de los mas sencillos i hermosos modelitos de las varias clases que existen.

Con esto damos por terminada nuestra primera tarea.

Injeniero Wilson.

LA EDUCACION DEL PUEBLO

EN LAS INDUSTRIAS.

SU INFLUENCIA DECISIVA EN EL PROGRESO GENERAL.

El célebre economista, Leroy-Beaulieu, deja establecido en sus estudios sobre las causas del escaso adelanto de algunas industrias, el hecho seguramente innegable de que las profesiones liberales, algunas veces; en otras, pero en menor cantidad, las artes; y siempre los empleos, ya sean públicos o particulares, arrebatan a los oficios manuales su mejor jente.

Citamos la autoridad de Leroy-Beaulieu únicamente como una satisfaccion que damos a los espíritus melindrosos que pudieran dudar de nuestras sanas intenciones, si tal afirmacion hi-

ciéramos por nuestra modesta cuenta i riesgo.

Porque la verdad es que talvez en todo el mundo, pero particularmente entre nosotros, el joven que podria ser un obrero intelijente, capaz de hacer progresar su arte, lejos de aplicar su talento i sus estudios a ese fin tan noble que favoreceria a todo un gremio, prefiere botar sus herramientas de trabajo, reniega de la honrada blusa i va a ser por lo comun un pésimo abogado, un mal empleado público o un artista ménos que mediocre.

Siempre el eterno hierro de preferir ser de los últimos en una esfera que no es la suya, cuando podrian ser los primeros

en la propia!

Es que durante siglos se ha creido que los obreros no deben aspirar a ser sino máquinas elaboradoras encargadas de tal o cual trabajo manual, para el que no se requiere nada mas que un poco de habilidad adquirida por la costumbre de hacerlo diariamente.

Ese es el concepto que se ha tenido de los oficios manuales. Un ejemplo práctico ha venido a sacarnos de tan craso error. Los Estados Unidos de Norte-América, entre otras causas poderosas tambien, debe su inmenso desarrollo industrial a la educacion jeneral de las masas; a la decisiva circunstancia de que allí cada obrero no es simple máquina de elaboracion manual, sino un ser intelijente que allega su concurso al perfeccio-namiento constante de los medios de ejecutar su trabajo.

namiento constante de los medios de ejecutar su trabajo.

Todo obrero yankee lleva consigo un bagaje precioso en su educacion, para llegar al perfeccionamiento de su oficio y si lo acompaña la suerte hará sin dificultades este camino, que ya conoce de antemano, porque muchos de sus compañeros lo han recorrido ya: de aprendiz pasará a oficial, de oficial a maestro, de maestro a mayordomo, de mayordomo a jefe y mas tarde a dueño de fábrica y luego hasta jerente de un formidable trust.

Ninguna de estas situaciones le habrá sorprendido, porque para todas estaba preparado; la escuela no se limitó a enseñarle lectura, caligrafía, las cuatro primeras reglas de la aritmética i un poco de gramática i relijion, sino que lo puso en camino de perfeccionarse en todos los ramos prácticos de la industria i del

La escuela no quiso hacer de él un poeta ni un filósofo, pero tampoco lo dejó para hombre-máquina: lo enseñó a ganarse la

vida, lo puso en camino de llegar a ser millonario.

Cierto que el yankee no entiende de arte mas que un adoquin; que la música no le suena como no sea mui bailable; que de los lirismos del amor se rien a carcajadas i no pueden entender eso que en otras partes llaman enamorarse; pero a ganar dinero, a formarse hombres por sí solos, no les aventaja nadie, gracias a su educacion especialísima.

No necesitan mas de veinte años para formar de un terreno baldío un emporio de riquezas; en treinta años reconstruyeron a Chicago de entre las ruinas de un pavoroso incendio que la arrasó hasta en sus fangosos cimientos; i de lo que ántes era un pantano insalubre, hicieron ellos la primera potencia industrial del

Las ciudades se levantan como por encanto, apoyadas en esa asombrosa fecundidad industrial yankee, cuya base principal no es sino la educación práctica de las masas.

El hombre i la mujer, todos se instruyen de un mismo modo; ni siquiera se detienen a examinar si hai entre ellos diferencias de sexo, devorados como están por la fiebre de instruirse para salir de la escuela a ganar dinero, ja hacerse millonarios!

Porque si cada soldado de Napoleon llevaba en su mochila el baston de mariscal, cada obrero yankee lleva en su educacion

el jérmen de un potentado de la fortuna.

A su impulso, las industrias alcanzan desarrollo monstruoso; consiguen perfeccionamientos increibles; y ese pais, que parece aquejado de elefantiasis, se ajiganta al estremo de amenazar al

Igualarlo no podremos jamas, porque somos de carácter distinto al suyo; i si concedemos que hai necesidad de ganar dine-ro para sobrellevar agradablemente la vida, no existiria para nosotros esa satisfaccion sin los goces intelectuales completamente apagados en el alma yankee.

En cambio, podemos tomar de tal ejemplo la parte proporcionada que nos convenga i esa no puede ser sino la de la edu-cación práctica del pueblo todo i mui particularmente de los

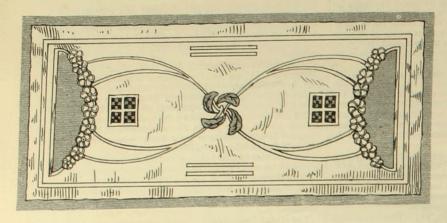
gremios obreros.

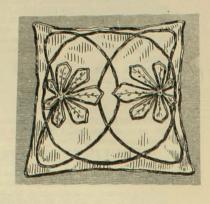
La democracia cree que el mundo está llamado a ser suyo. Lo será indudablemente, pero cuando cada uno de sus miembros se hava preparado de tal modo que ninguna situacion le sorprenda.

I ese ideal, ¿cómo se realizará?

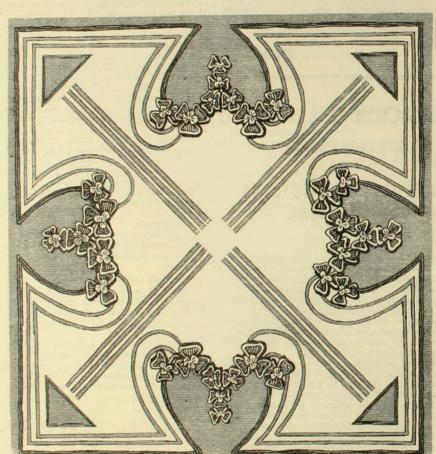
No han de ser los actuales gobiernos, por supuesto, los que pongan en manos de los obreros las armas con que han de combatirlos victoriosamente; son los obreros mismos los que deben procurárselas, dedicándose al estudio, vigorizándose de cuerpo i puliendo el alma.

Mucha lectura, mucha contraccion al trabajo, mucha propaganda de estas ideas que son semillas de bienestar, i mucha union: he ahí los elementos con que los humildes contribuiremos al progreso jeneral del pais i las armas con que obtendrán una solucion victoriosa del gran problema social del siglo los gremios obreros.

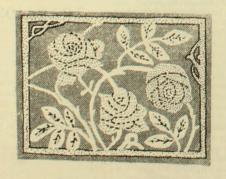

Juan Garcia,

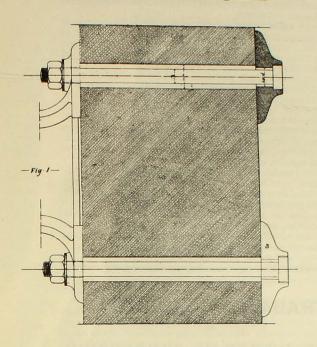

de la redaccion de El Chileno.

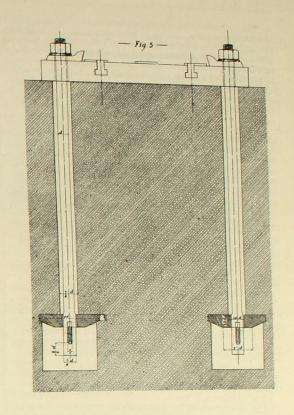
TRABAJOS PARA SEÑORAS

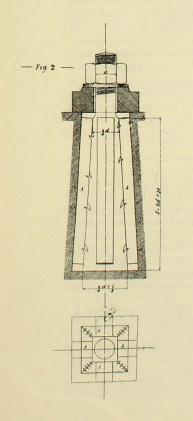

Los trabajos femeninos parecen determinar en un interior su carácter de instalacion definitiva, el rasgo personal de la dueno de casa que debe presidir en todo hogar. Ninguna mujer, sabiendo el poder de ese encanto que puede emanar de ella i se adhiere a los objetos familiares, tiene el derecho de guardarlo consigo misma en vez de espandirlo a su alrededor.

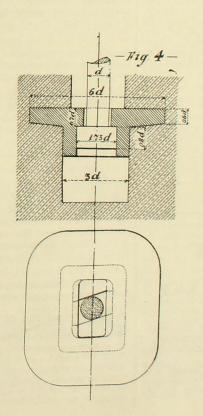
En esta sección de «El Arte Industrial» procuraremos allegar a nuestras lectoras un escojido continjente de materiales de dibujos modernos, combinaciones de estilos elegantes i al mismo tiempo sencillos, que les puedan servir prácticamente para el hermoseamiento artístico de sus moradas, permitiéndoles dar vida a ese rol femenino que adorna i embellece con su fantasía el cuadro de la existencia cuotidiana.

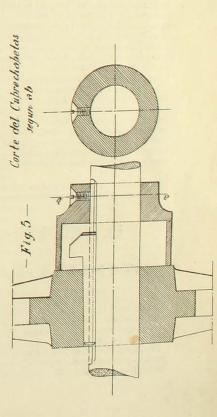

TRABAJOS PARA SEÑORAS


SENORAS


TRABAJOS PARA






MECÁNICA

En medio de los elementos decorativos de los interiores modernos, en que el arte de la linea preside con su seductora elegancia, tienen particular valor los trabajos de las señoras. Los modelos que ordinariamente se encuentran a disposicion de ellas carecen de una composicion detenida, de un sentimiento estudiado de conjunto. El trabajo es, las mas veces, minucioso i complicado, procurando hacer valer la habilidad de la internaria la que timbo a dera la composicionado de la la composicionado de la com ejecutante, lo que tiende a dar a la obra un interes esclusivo de detalle con perjuicio del mismo papel decorativo que debia representar en medio de otros elementos diversos

I, sin embargo, la mujer de hoi dia ha sabido ya maravillosamente adaptar la decoracion de su «toilette» al espíritu mo-derno. I esa no es la obra sola de las modistas. Ciertos instintos femeninos, ciertas iniciativas atrevidas, así como han inventado los preciosos conjuntos de los trajes de sarao, han encontrado tambien la formula perfecta del traje de calle i de paseo, de un corte estremadamente sobrio, que da todo su valor a la línea jeneral, i lleno de interes por su decoracion reservada, hecha de galones, de costuras, de pasamanerias de una combinacion

casi únicamente lineal.

En nuestros modelos hemos querido buscar para los pequenos trabajos de decoracion doméstica, en los cuales las seño-ras pueden emplear sus talentos i sus gustos, el equivalente de este espiritu moderno ya revelado en el traje.

Tres elementos tienen aqui su importancia: el dibujo, el

color i el procedimiento de ejecucion.

La composicion misma estará comprendida en un espiritu de simplificacion; habrá siempre un arreglo de motivos simétricos i repetidos, único partido posible para que este elemento de decoracion tome un caracter arquitectónico i de «conjunto» entre los demas elementos. Se trata de proceder por formas simples, por manchas francas, cuya voluntad de combinación i de armonia se impone de léjos. Én este dibujo el juego de líneas adquiere un papel mui importante; la linea anuda i encua-dra; viene a guiar, encerrar i mantener la decoracion ornamental, compuesta jeneralmente de flores i de hojas. El color existe a la vez en el fondo del tejido, en las bandas

o en los entredoses, en las líneas o en los puntos del bordado; pero hai siempre un efecto de conjunto deseado, sea la coloracion monócroma o policroma, de tonalidad dulce o violenta.

Citaremos, por ejemplo, para dar una idea de estas armonias, un mantel de tela blanca con aplicaciones de lazos de seda amarillo oscuro, una bordura de tela amarillo claro i flores de seda de un amarillo intermedio, con puntos de bordados violentos formando cercado; o bien, aun, un camino de mesa de tela inglesa verde, con aplicaciones de tela roja, flores aplicadas en rojo mas claro i lazos de un rojo cardenal.

En cuanto a los procedimientos i a los materiales empleados, son ellos múltiples. Toleran una tela de fondo, blanca o coloreada; bandas de color o marcos, líneas rectas de lazos de diferentes anchos i de tonos variados, aplicaciones de tul, de tejidos diversos i de puntos de bordado. Pero se puede decir que esta diversidad no hace sino aumentar la impresion de simplicidad, pues tiene por resultado suprimir el esfuerzo inútil, de hacer dar por tal o cual materia el efecto que ninguna otra reemplazaria tan bien. Es así, por ejemplo, como los ámplios efectos de tonalidades suaves se producen no en los puntos bordados sino en los entredoses aplicados.

La reunion de todos estos materiales reclama discernimiento i aun una documentacion especial, puesto que hai algunos que no pueden provenir sino de fábricas particulares; es, pues, aun para una señora espérimentada, un trabajo a veces imposible. Es necesario, las mas de las veces, que estos trabajos para señoras sean preparados; es el servicio que procuramos hacer con nuestros pequeños modelos, que pueden dar lugar, por otra parte, á combinaciones diferentes de líneas i colores.

PAULINA.

EL "MODERN-STYLE"

MOBILIARIO

El estilo en el mobiliario ha preocupado a todas las sociedades adelantadas, constituyendo en ellas una característica suigéneris que muchas veces ha servido para denominar una época.

Toda sociedad refinada ha puesto sus ojos en los objetos familiares que la rodean, i a medida que el perfeccionamiento se ha hecho mas esquisito, las manifestaciones artísticas han ido introduciéndose en los adornos de los hogares, como comple-

mento necesario de las réjias mansiones i palacios.

En la época actual, entre nosotros, priman los mobiliarios europeos, particularmente los estilos franceses; pero ahora co-mienza tambien a introducirse el "Modern-Style" con sus líneas caprichosas i ondulantes

En este estilo nuevo hai una mezcla de lo antiguo con lo moderno, con lo del dia, notándose cierta tendencia a unir lo sólido del confortable mobiliario ingles o norte-americano—que pecaria nada mas que por su pesadez-con la elegancia del

Hemos arreglado una pájina de escojidos modelos de muecombinando lo esquisito del dibujo a la "Art-nouveau,"

práctica comodidad del objeto.

Asi es, por ejemplo, ese atrayente mueble-biblioteca para vestibulo-el primero de la pájina-que parece convidar al reposo i a la meditación con un buen libro i teniendo a la mano toda clase de comodidades para colocar platillos con dulces, licores o refrescos, cajas de cigarros, etc. Es un mueble particularmente sencillo, elegante i confortable a la vez.

Los otros modelos son dos sillas de vestíbulo o hall, tan fáciles de hacer como bellas por su nueva forma; una etagère o mesita de boudoir monisima i delicada, i un armario de espejo

agradable por su sencillez.

Estos modelos, fácilmente aprovechables para los carpinteros i ebanistas, son los primeros de la série variadisima que ofreceremos a los favorecedores de nuestra Revista, série que, con el tiempo, formará un álbum por demas útil.

TRABAJOS TENDENTES

SANEAMIENTO DE CONCEPCION

Entre las obras de saneamiento que pueden efectuarse en esta ciudad, tan hermosa i digna de ser atendida, aparte del alcantarillado que tan triste fracaso sufrió poco há, i que es de esencial i urjente necesidad realizar, podria citarse la disecacion de las lagunas i pantanos que la rodean i que, como la de las Tres Pascualas, está relativamente central, humedeciendo un estenso barrio de obreros i jente menesterosa. Si hácia la laguna se abre una ámplia avenida de acceso i una vez estraida el agua se forma en esa estension un hermoso parque, abarcando parte del cerro de la Pólvora, la ciudad se salvaba de un foco de humedad e infeccion i ganaba el mas bello de los paseos públicos, aparte de que los predios colindantes, i que hoi tienen derecho al lago, cambiarian su fondo en frente con un derecho mas útil i valioso, como seria un parque forestal lleno de atractivos por los mismos paisajes que de ese punto se dominan. Las habitaciones cercanas, casi todas al nivel mas bajo del que tienen las vias i ubicadas en suelo tan húmedo, iríanse transformando poco a poco, salvando muchas vidas i alejando epidemias que tan cruelmente azotan ese barrio.

Esta laguna está a mayor altura que el rio Andalien, donde desagua, i que el Matadero público, en cuyos servicios se emplea el agua de ella. A nadie puede escapar lo peligroso que es esta práctica, pues que en las aguas de la laguna lavan ropa sucia, bañan caballos i otros animales, no existiendo ningun purificador ántes de entrar al Matadero, que está situado relativamente cerca. ¿No sería mas prudente hacer un sacrificio, llevando agua potable a ese establecimiento o aun seria ménos pernicioso que la laguna usar el agua del Andalien, subiéndola a máquina?

A las autoridades locales corresponde realizar una obra tan fácil y tan benéfica, que ella sola les daria nombre i serian recordadas con entusiasmo.

Como ésta existen muchas otras obras que fácilmente pueden realizarse i de las cuales nos ocuparemos próximamente.

Wielandt.

MECÁNICA

Trasmisiones Mecánicas de Talleres,

Establecimientos, Cálculo i Construccion.

PRIMERA PARTE

Establecimiento

§ I

CONDICIONES QUE DEBE LLENAR UNA BUENA INSTALACION

DE TRASMISION.

En jeneral, una trasmision debe ser:

Suave (sin trepidaciones) i

Económica.

Para que una trasmision sea económica debe presentar los

caractéres siguientes:

1.º-Una lijereza especial, obtenida sin apartarse de las condiciones de seguridad exijidas por los materiales en:pleados, con el fin de evitar sobre-cargas que pueden perjudicar la estabilidad del edificio que la soporta, pérdidas inútiles de lubrificante i de fuerza motriz (se admite jeneralmente que mil kilos de órganos de trasmision puestos en movimiento absorben un caballo de

2.º - Una disposicion de montaje i de desmontaje que permita visitar fácilmente un órgano cualquiera, sobre todo aquellos que requieren un mantenimiento especial. Un montaje sólido y bien hecho es una condicion esencial en toda trasmision bien establecida para evitar que los obreros malgasten su tiempo a causa

de las paradas i reparaciones frecuentes.

Poseer un engrasaje automático perfecto.

4.º Una disposicion que permita aislar fácilmente i poner en marcha, sin choques, a cada una de sus partes principales a fin de no hacer jirar inútilmente líneas enteras de árboles con todo

su equipaje.

5.º-Llevar poleas i engranajes establecidos rigurosamente en funcion del trabajo mecánico por trasmitir. Es necesario, ademas, que los engranajes vayan trazados con la mayor precision posible para alcanzar el máximo de rendimiento de que son capaces estos órganos de trasmision.

6.º-Tener árboles de trasmision perfectamente calibrados, i en cuanto se pueda de diámetros uniformes para facilitar los repuestos. Las superficies de contacto de los descansos deben establecerse en funcion de las cargas i velocidades dadas a fin de

evitar calentamientos i desgastes rápidos.

7.º-Estar bien niveladas i bien equilibradas para anular el trabajo debido a la pesantez o a la fuerza centrifuga, reduciendo así a su mínimum las pérdidas del trabajo debidas al frota-

8.º-Por último, una trasmision debe presentar una seguridad

absoluta contra toda clase de accidentes.

§ II

REGLAS JENERALES PARA EL ESTABLECIMIENTO

DE UNA TRASMISION

En realidad, es imposible formular reglas absolutas para establecer una trasmision en condiciones determinadas de economia, seguridad i rendimiento; sin embargo, teniendo en cuenta los resultados alcanzados con trasmisiones juiciosamente establecidas i las particularidades que exije cada caso aislado se puede dar algunas indicaciones jenerales, como las mas convenientes para conseguir los resultados requeridos en las mejores condiciones posibles.

Así se debe:

1.º—Disponer todas las lineas de árboles perfectamente rectilíneas, a nivel i en cuanto se pueda, rigurosamente paralelas

entre si i al árbol motor.

Para establecer una línea de árboles perfectamente rectilinea i a nivel, princípiese por fijar sobre cada descanso su altura de centro, es decir, la distancia que hai entre el plano inferior de su zapata i el centro del cojinete. Hágase pasar, en seguida, un hilo liviano, fuertemente tendido, por dos puntos suficiente-mente alejados i tomados al mismo nivel sobre las dos sillas estremas. Hecho esto, móntense las sillas intermedias de modo que el asiento de cada descanso ocupe su posicion verdadera por debajo del hilo i fíjeseles definitivamente. Una vez asegurada

la solidez de las fundaciones, colóquese cada descanso sobre su silla correspondiente. Para esto arréglese en cada cojinete un disco semi-circular provisto de una muesca que coincida con el centro de cada descanso i colóquese cada uno de estos órganos de trasmision de manera que su eje se confunda con un hilo tendido de un centro al otro de los dos descansos estremos.

Colocados que sean los árboles, la dirección de la trasmisión puede verificarse sirviéndose de miras provistas de correderas que sirven para arreglar su altura segun el diámetro del árbol

sobre el cual descansan.

Una mira debe colocarse en cada una de las estremidades de la trasmision por verificar, i una tercera, movible en el sentido de la lonjitud de los árboles, debe servir para efectuar la ope-

Para esto puede emplearse tambien el procedimiento si-guiente: tiéndase una cuerda por debajo de la trasmision, paralelamente a su direccion. Un hilo a plomo colocado tanjencial-mente al árbol i en puntos diversos debe caer a distancias iguales de la cuerda si el diámetro de la trasmision es la misma en toda su lonjitud, o a distancias variables segun el diámetro del trozo correspondiente.

Ahora, por lo que respecta a la horizontalidad de la trasmision, puede verificarse mui fácilmente sirviéndose de un nivel

ordinario de burbuja de aire.

2.º-Montar las sillas, consolas i descansos sobre soportes sólidos e insensibles a los efectos dinámicos de la trasmision.

3.º-Colocar las líneas paralelas de trasmision a distancias proporcionadas a la potencia por trasmitir. En el comando por correas conviene adoptar las siguientes distancias:

Para trabajos de poca consideracion-hasta 20 caballos de fuerza—3 metros a lo menos;

Para trabajos superiores—hasta 100 caballos—4 m. 500 a 5

Para trabajos superiores aun, de 5 a 7 metros.

Para dinamos i electro-motores, de 5 a 6 metros segun la potencia por trasmitir.

Cuando la distancia que hai entre los dos árboles por comunicar pasa de 8 metros i no se puede colocar una trasmision intermediaria, es necesario reemplazar las correas por cables de cáñamo o de cuero i las poleas de llanta bombada por poleas de garganta;

"-Adoptar como relacion entre los diámetros de dos ruedas dentadas o de dos poleas que se conducen un valor infe-

5.º—Disponer los engranajes cilíndricos que deben poner en movimiento a los árboles vecinos lo mas cerca posible de los descansos i de los soportes ríjidos a fin de que estos absorban las vibraciones que pueden producirse en la trasmision por las trepidaciones de estos engranajes. En las trasmisiones que llevan engranajes cónicos, elizoidales o hiperbólicos, esta precaucion es mas necesaria aun.

Es conveniente, en algunos casos, para evitar las presiones sobre los apoyos, montar los descansos de cada uno de los árboles sobre un zócalo de base única sólidamente establecido. Los árboles deben aislarse en este caso cerca de los engranajes,

por un machon de dilatacion.

Los machones de acoplamiento deben colocarse tambien mui cerca de los descansos, a una distancia de 30 a 40 milimetros a lo sumo. Es conveniente no colocar poleas que deban trasmitir un trabajo algo importante mui cerca de estos machones.

Las poleas de ataque u otras de grandes dimensiones deberán colocarse siempre mui cerca de un descanso, teniendo cuidado sí de conservar en cuanto se pueda un espacio superior al ancho de la correa para evitar su destruccion cuando por algun motivo haya necesidad de votarla. El mismo espacio deberá dejarse entre dos poleas contiguas.

6.º—No unir las secciones de la trasmision por órganos que trabajen por choques, para evitar la destrucción de los árboles i de los engranajes. Los acopladores de fricción son los mas

convenientes en este caso.

7.º-Fijar las piezas que descansan sobre la albañileria en las partes mas resistentes i sobre superficies de apoyo anchas i sólidas. Cuando la fijacion de la pieza debe efectuase sobre un muro, la disposicion indicada por la Fg. 1 es mui conveniente. Para que la tracción ejercida por el perno se trasmita a una gran parte del muro se hace descansar su cabeza sobre una pieza redonda a de fierro fundido. Algunas veces se reemplaza esta pieza redonda por una placa cuadrada o alargada. El diá-metro que se da ordinariamente a este plato es de 7 a 8 veces

Cuando las piezas deben fijarse por su base, los pernos de fun-dacion, Fig. 2, son mui empleados. El ancho de la estremidad superior del agujero debe ser bastante grande para permitir la introducion del perno cuya fijacion se hace encajando con fuerza las cuñas A i colando en seguida cimiento o plomo. Algunas

veces se suprimen las cuñas, rellenándose simplemente el agu-

jero con algunos de los materiales antedichos,

Cuando las fuerzas en accion son considerables, los pernos de fundacion son incapaces de producir un ensamble bastante seguro. En tal caso, la anclas de fundacion, Fig. 3, son mui convenientes. Los conductos o nichos A sirven para introducir o quitar las chavetas B cuando por algun motivo sea necesario quitar los pernos. En los casos en que no sea posible practicar estos nichos, la disposicion indicada por la Fig. 4 da mui buenos resultados. El perno se encaja por la parte superior i se le hace tomar su posicion definitiva por un cuarto de vuelta mas o ménos. Las proporciones que conviene dar a cada una de las piezas están indicadas sobre las figuras.

8.º—Suprimir o por lo ménos cubrir convenientemente, todas las partes salientes, tales como talones de chavetas, pernos, tuercas, etc., que sea necesario colocar sobre los órganos móviles, para evitar accidentes cuando funcionan. Las poleas, volantes i ruedas dentadas deben cubrirse con una tapa o caja cuando puedan estar al alcance de los obreros. Una disposicion mui conveniente para cubrir las chabetas es la indicada por la Fig. 5. En casos de dificultad para introducir el cubre-chabetas deberá

emplearse entónces uno en dos piezas...

A. del Valle E.

Escuela de Artes i Oficios EN CHILLAN.

Los diarios anunciaron en dias pasados la creacion de una escuela de mecánicos i carpinteros para Chillan, la cual comenzaria a prestar sus servicios en el próximo mes de Marzo del año entrante.

Al fin, el Gobierno trata de demostrar a nuestros hijos que tambien tiene para ellos un momento de atencion que dedicarles. Comprende que es menester atender tanto al rico como al
pobre, pues que todos son hijos de una misma patria, i que el
pueblo, ese pueblo manso, sumiso i tranquilo, que jamas altera
la paz de sus gobiernos; ese pueblo patriota i valiente que empuña primero que nadie las armas para volar a los campos de
batalla i dar su sangre por la patria i su bandera, necesita muchos i mui buenos maestros, muchas escuelas primarias i normales, de artes i de oficios, de industrias i de comercio, si es
verdad que se desea realmente su bienestar, su instruccion, su
progreso i adelanto.

Saben mui bien nuestros hombres dirijentes que sin estos elementos es inútil alcanzar el engrandecimiento, la prosperidad, los adelantos i progresos maravillosos con que nos deslumbran otras naciones, otros pueblos ántes mas pobres i atrasados que nosotros.

Establézcanse, pues, en nuestro suelo escuelas i talleres en donde se cultive el alma i se fortalezca el cuerpo, en donde se adquieran al mismo tiempo las nociones del saber humano i el oficio noble que dignifica la hombre acercándolo a la imájen de su Creador!

Inspírese nuestro jóven Ministro de Instruccion Pública en el ejemplo que cada dia que pasa dan al mundo los Estados Unidos de América, i proporcione al pueblo—tal cual lo hacen los sabios gobernantes de aquella gran nacion—la luz que les falta a su espíritu intelijente, i entónces los hijos de la patria chilena probarán al mundo que ellos, educados e instruidos, son tambien capaces de llevar a la realizacion obras tan grandiosas i dignas de llamar la atencion universal, i conquistar renombre, autoridad i respeto, honor i glorias que venir a depositar en los altares de la patria querida.

Tributemos, pues, a nuestro Gobierno respetuoso homenaje por esta sabia i justa disposicion gubernativa, i El Arte Industrial felicita particularmente al noble i progresista pueblo chillanejo por tan preciosa obra que acaba de adquirir para sus hijos.

R. Tapia.

A LOS MAESTROS

Solo espera la Administracion de esta Revista se publique el nuevo programa de instruccion primaria para ceñirse a él, i poder dar principio a la publicacion de modelos que sirvan de guia para la enseñanza de tan importante ramo en las escuelas públicas.

Miscelánea

COLORACION ARTIFICIAL DE LAS FLORES.

EN LA PLANTA.—Los tres colores: negro, verde i azul, se encuentran rara vez en las flores. Siguiendo procedimientos especiales, se puede conseguir que las flores adquieran estos colores.

Para el negro se toma el fruto del olivo cuando está bien seco i se reduce a polvo impalpable.

Para el verde, el jugo de la ruda; i para el azul, los pétalos de la flor de lis, que crece en los campos de trigo; se pulverizan

despues de secas.

Ál emplear estas sustancias, se mezcla aquella cuya coloracion ha de comunicarse a la planta, con estiercol de ovejas, vinagre i sal, de modo que la proporciou de la materia colorante sea un tercio de la masa. Esta, mui espesa, se pone bajo las raices de la planta: se riega con agua teñida de la misma materia colorante; en las demas se cuida la planta como de ordinario.

Con el verde i azul se sigue igual tratamiento. Se prepara la tierra con cuidado, i la planta se preserva del rocio i esponiéndola al sol.

La coloración púrpura resulta preparando la pasta con palo del Brasil.

El carbon vejetal da mas intensidad al color de las dalias, rosas, etc.

El carbonato sódico vuelve rojos los jacintos. El peróxido de hierro (que se disuelve lentamente) da una coloración mas intensa que el sultato de hierro.

Recetas Industriales

1. Betun para el Calzado.—Este betun es caro, pero tiene la ventaja de no estropear el cuero, como sucede con los que contienen ácidos minerales.

Se pone en un litro de cerveza 60 gr. de negro animal, 30 gr. de azúcar cande, 30 gr. de goma arábiga, todo ello en polvo finísimo, i 120 gr. de cera vírjen. Se hierve a calor suave durante diez minutos, se separa del fuego i se continúa mezclando hasta que esté frío.

2. Se ponen con 5 litros de agua 120 gr. de jabon en pedazos, 60 de carbonato de potasa; se disuelve a la temperatura de 40°, despues se agregan 500 gr. de cera vírjen, ajitándolo hasta obtener una emulsion densa, i se añaden las siguientes sustancias en polvo mui fino:

Negro de				1,000	gr
Azúcar	* * * *	 2.0		150	gr
Goma aráb	nga		-	60	gr

Se mezcla, etc.

PARA CALZADO AMARILLO

a)	Esencia de trementina	4
	Aceite de ricino	2
	Vaselina	
	Cera amarilla	
b)	Aceite de linaza	2
	Cúrcuma en polvo	3

Se disuelve la cera amarilla en la esencia de trementina, i se agrega despues el aceite i la vaselina. Se deslie aparte la cúrcuma en aceite de linaza. Se mezclan a) i b) ajitando constantemente. Este betun se estiende con un paño fino i seco.

AJENCIA DE CONSTRUCCIONES Y REPARACIONES

FÁBRICA A VAPOR

Sto. DOMINGO, 1716 (pasado Riquelme)

ENRIQUE ECHEVERRIA CAZOTTE &

Casilla 1135

LA AJENCIA se encarga de:

Construcciones y reparaciones de edificios y departamentos interiores.

Recibe órdenes para ejecutar en las casas trabajos de cualquier naturaleza, garantizando la buena ejecucion de éstos.

LA FÁBRICA se encarga de:

Trabajos de carpinteria en jeneral.

Instalacion y traslacion de Oficinas y Casas Comerciales.

Hace muebles corrientes y de fantasia.

Compone, transforma, barniza, pinta y tapiza toda clase de muebles.

Recomienda sus entablados-encerados, IMITACION PARQUETS, que por su bajo precio, duracion e hijiene, reemplaza con ventaja al mejor alfombrado.

KINDERGARTEN CATOLICO

Catedral 1878, entre Almirante Barroso y Brasil

Este establecimiento está dividido en dos secciones:

Kindergarten

Curso Preparatorio

SECCION KINDERGARTEN

PARA NIÑITOS Y NIÑITAS DE 4 A 7 AÑOS

aritmética de 1 a 20 y pequeñas poesias. Guiados cariñosa y dulcemente por sus profesoras, los pequeñaelos confeccionan preciosos objetos. Así se habituan desde luego al trabajo, especialmente al industrial y artístico.

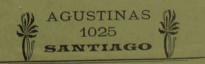
CURSO PREPARATORIO

PARA NIÑITOS Y NIÑITAS DE 6 A 12 AÑOS

Dividido en tres secciones; corresponde a las tres preparatorias de los liceos fiscales. El inglés signe siendo obligatorio.

La directora y dos señoritas inglesas tienen a su cargo la enseñanza de este idioma.

OTRAS NOTICIAS


I. LOCAL cómodo, hijiénico y elegante.—II. CARRUAJES para ir a buscar y a dejar a los niños acompañados siempre de sus profesoras.

III. LIBROS Y ÚTILES en el colejio al mismo precio de las librerias.

Fanny de Retamal Balboa,

SASTRERIA

Manuel F. Villarroel

Confeccion esmerada de TRAJES para eclesiásticos y militares

CLUB PERMANENTE DE TERNOS DE VESTON

a Dos Pesos semanales

PREPARADOS PERSONALMENTE

+ P. Perez Barahona +

Farmacéutico de la Universidad de Chile

Emulsion de bacalao con hipofosfito de cal y sosa. Un frasco, 60 centavos; litro, 2 pesos.

Vino de Quina, 60 centavos frasco. Licor de Alquitran, 60 centavos frasco.

BOTICA NORMAL

Portal Fernandez Concha, 918

CERCA DE LA CALLE DEL ESTADO

Imprenta del Universo

VALPARAISO Y SANTIAGO

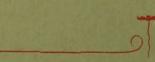
FÁBRICA DE LIBROS EN BLANCO

LITOGRAFÍA

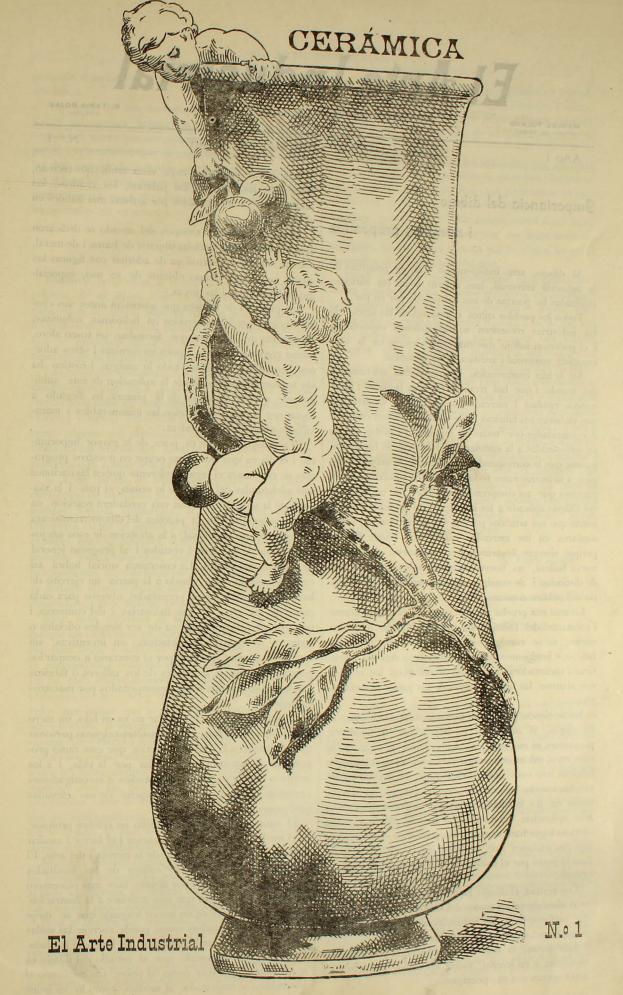
CARTONAJE

FÁBRICA DE

** SOBRES **


FICHAS DE

4* GOMA 4*


PLATOS DE

** CARTON **

El Arte Industrial

MANUEL TULAUD

REVISTA MENSUAL ILUSTRADA

R. TAPIA ROJAS

Año l

Santiago de Chile, 1.º de Mayo de 1908

N.º 1

Importancia del dibujo

i nuestros propósitos

Al dibujo, arte indispensable para el progreso de la industria universal, han abierto todas las naciones civilizadas las puertas de sus colejios de par en par.

Todos los pueblos cultos i amantes de las artes i de las industrias reconocen su trascendental importancia i el poderoso influjo que este ramo ejerce en la vida científica, comercial i artística de cada nacion.

Así lo han comprendido los países mas adelantados del mundo i que hoi rivalizan por dar facilidad i abrir nuevos rumbos i mercados a los millares de artículos que elaboran sus fábricas i que se desparraman en grandes cantidades por todas las rejiones del globo, dando en sus escuelas a la enseñanza del Dibujo, el lugar preferente que le corresponde i prestándole la mayor atencion a su cultivo entre todos los ramos escolares. Estas naciones que así comprenden el valor i la importancia del Dibujo aplicado a las industrias, no podrán esperar jamas que sus artículos puedan ser derrotados por otros similares en los mercados estranjeros donde llegan, porque siempre llevarán impreso un nuevo signo, una nueva belleza, un nuevo encanto que los hacen dignos de distincion i, de consiguiente, de merecer la preferencia del público consumidor.

Lo cual nos prueba ademas que, sin el cultivo atento i constante del Dibujo, tan indispensable en todos los oficios, no se consigue jamas formar esos operarios hábiles e intelijentes que nos deslumbran con sus inventivas i encantadoras novedades artísticas en los objetos que abarcan las mil industrias de los países manufactureros.

No se tienen, pues, esos mecánicos, ni mueblistas, ni cerrajeros, ni zapateros, ni hojalateros, ni tejedores, ni sastres, ni modistas, ni sombrereros, ni pintores ni esos otros mil artesanos que saben dar a los objetos que fabrican con unos mismos elementos, los nuevos encantos, las nuevas bellezas, los nuevos rasgos, las nuevas líneas en las infinitas formas que se consigue por una feliz aplicacion del maravilloso arte del dibujo, que tan elevado lugar hace ocupar a los productos elaborados en aquellas naciones que cuidaron que la escuela desarrollara el gusto por el cultivo del Dibujo entre sus futuros obreros.

I en verdad, el dibujo, ha dicho un reputado profesor, es el alma de varios ramos del Comercio; es el que hace dar preferencia a las industrias de una nacion; el que centuplica el valor de las materias primas.

Los paños, la platería, las alhajas, la porcelana, las tapicerías i en jeneral, todos los oficios relativos a las artes operan con sus principios.

Las obras maestras, cuya vista tanto nos recrean, como son las estatuas, los palacios, los cuadros, los adornos, etc., son ejecutados por artistas mui hábiles en el dibujo.

Desde los primeros tiempos del mundo se dedicaron algunos hombres a modelar objetos de barro i de metal, i desde entónces gustaron ya de adornar con figuras las mesas, las sillas i demas objetos de su uso, especialmente las sortijas i las joyas.

Los puntales de madera que sostenian ántes sus chozas rústicas fueron convertidos en bellísimas columnas; las cabezas de las vigas que formaban un tosco alero, fueron convertidas poco a poco en cornizas i otros adornos hermosos i sencillos; i todo lo antiguo i rústico ha ido trasformándose mediante la aplicacion de este sublime arte, que, acompañado de la pintura, ha llegado a imitar con la mayor perfeccion las innumerables i maravillosas obras de la naturaleza.

El estudio del dibujo es, pues, de la mayor importancia, i el dia en que este ramo ocupe en nuestros programas de enseñanza el lugar preferente que en las naciones mas adelantadas del globo se le señala, el país i la mavoría de la sociedad notarán una verdadera reaccion, un poderoso impulso que la práctica del dibujo comunicará al mejoramiento individual, a la abolicion de esos añejos ornamentos de las casas i vestidos i al progreso jeneral de las artes nacionales. La enseñanza oficial habrá así cumplido con su deber, dando a la patria un ejército de hábiles, intelijentes i bien preparados obreros para cada ramo de las artes, de las industrias i del comercio, i nuestros artesanos dejarán ya de ser simples oficiales o maestros de banco sin iniciativas, sin inventivas, sin creaciones propias, pasando por el contrario a ocupar los puestos de jefes o directores de los talleres o fábricas que hoi en su mayoría están desempeñados por maestros estranjeros.

El poseer el arte de dibujar no es un lujo, un mero pasatiempo como todavía lo consideran algunas personas que desconocen la utilidad práctica que este ramo proporciona al artesano en la lucha por la vida, i a los hombres que se dedican a los estudios e investigaciones científicas para el mejor desempeño de sus elevadas profesiones.

El estudio del dibujo, ha dicho un célebre profesor, es el medio mas eficaz de educacion i el factor i ausiliar mas importante de la cultura, de la ciencia i del arte. Él facilita ademas el completo cultivo de las facultades perceptivas i analíticas, i por último, hace mas placentero i atractivo el sendero que nos conduce a la ilustracion. Proporciona al hombre un nuevo lenguaje que se dirije a los ojos i que, muchas veces, puede correjir las malas interpretaciones i ambigüedades del lenguaje hablado. De donde se desprende que el estudio del dibujo es igualmente útil al rico como al pobre; tan necesario al hacendado, al majistrado, al médico, como lo es indis-

pensable al mecánico, al mueblista, al cerrajero i demas artesanos.

Así, pues, lo han comprendido ya los hombres dirijentes de nuestra instruccion, i desde hace tiempo vemos con placer que esa apatía, esa ignorancia, el desprecio i la hostilidad que ántes se oponian a su cultivo, hoi desaparecen ahuyentados ante la luz de la esperiencia, i el dibujo va gradualmente ganando terreno i, con paso firme, penetra ya en el recinto de todos nuestros establecimientos de enseñanza.

.Hierig orrisiica

Nuestros propósitos al editar la presente Revista la primera de su jénero que ve la luz pública en nuestro país, es la de servir siquiera con un grano de arena al levantamiento del colosal edificio de las artes nacionales que se proponen elevar en nuestro suelo los hombres amantes de la prosperidad i grandeza de la patria.

Las modestas columnas de nuestra Revista están destinadas especialmente a proporcionar a nuestros compatriotas toda clase de conocimientos útiles i las nociones claras i concisas i modelos del arte aplicado a los diferentes objetos que abarcan las profesiones o industrias. Cada obrero encontrará siempre algo nuevo, útil e importante que aplicar a la práctica de sus obras.

Si a un pintor de letras, por ejemplo, se le pide la confeccion de un rótulo para zapatería o librería, etc., en nuestra Revista encontrará, si es constante suscritor, diferentes clases de estilos de caractéres modernos i los escudos correspondientes que sirven de emblema a aquellos establecimientos, que son dibujos de figuras hermosísimas, armoniosamente combinadas que adornan su trabajo, dándole mayor mérito, i de consiguiente produciéndole mayor utilidad pecuniaria.

Igual cosa sucederá a cualquier otro operario que busque los elementos que hoi no tiene sino por mucho precio, para llevar a cabo con perfeccion las obras que se le encomienden concernientes al ramo de su profesion. En fin, cada obrero encontrará al lado de conocimientos utilísimos tan necesarios en la vida diaria, hermosos modelos que imitar que le excitarán el gusto por inventar otros nuevos; la mayoría de ellos irán acompañados de esplicaciones claras i concisas en el testo.

En este primer número de nuestra Revista, como en todos los subsiguientes, las primeras pájinas las llenarán modelos (con los que se llegará a formar un testo) que pueden servir de tema a los profesores para la práctica de esta enseñanza; las otras pájinas llevarán modelos de figuras de fácil e injeniosa aplicacion a las diferentes artes e industrias.

Nuestros lectores estrañarán al encontrar al lado de los principios elementales mas fáciles otros mas difíciles; al lado de figuras ejecutadas con simples líneas, otras con rasgos i rudas combinaciones, etc., etc.

Pero al hacerlo así nosotros, hemos tenido en vista: 1.º Que los primeros ejercicios servirán solo a los principiantes; i

2.º Que las demas figuras pueden ser aprovechadas por las personas familiarizadas con el arte.

De este modo serviremos entónces atodos en jeneral: a los que saben i a los que no saben; i nuestra Revista, siguiendo este sistema desde su primer número, prestará tambien desde el primer día de su fundacion, toda la utilidad que es menester.

En sus primeros pasos, los horizontes que abarcará nuestra Revista, serán modestos, estrechos i limitados, pero a medida que el público vaya prestándole su proteccion i el tiempo vaya trascurriendo, con él irá ensanchándose poco a poco, dilatándose mas i mas, hasta llegar a abarcar i reproducir en sus ántes modestas columnas, las maravillas creadas por los jenios, las obras inmortales de los maestros del arte.

Ahora lo único que necesitamos es la proteccion i buena acojida que nos dispense el público, especialmente los maestros de la infancia i los obreros en jeneral: pues que a ellos va dedicada nuestra Revista a fin de que ella salve todos los obstáculos para seguir una marcha próspera, feliz, paseándose triunfadora del uno al otro estremo de nuestra patria i vaya enriqueciendo las bibliotecas escolares i particulares i los talleres modestos de todos los obreros del país, hasta llegar a conquistar la anhelada gloria para las artes i las industrias nacionales.

En el presente trabajo no nos guia la idea del lucro, sino la de servir a la juventud que se educa; a los hombres que trabajan i que carecen de una obra semejante; a los que aman las ciencias i las artes, el comercio i las industrias; en una palabra: la idea de servir a nuestros conciudadanos en todas sus esferas sociales con nuestra pobre i modesta intelijencia, pero sí, con nuestra inquebrantable i decidida buena voluntad.

R. TAPIA ROJAS

Santiago, 1904.

El arte de la Cerámica

Algo sobre su historia

La abundancia de los materiales necesarios a la fabricación cerámica i la facilidad de estraerlos, de arreglarlos, de darles sin aparatos de arte o de ciencia formas, ornamentos i colores convenientes a su destino, han hecho de ella el primer comienzo de las artes e industrias en todos los pueblos del mundo, constituyendo la elaboración de ollas de tierra, secadas al sol o cocidas al horno, una de las primeras invenciones de la industria humana, como dice Platon.

La etimolojia de la palabra cerámica, del griego keramicos, de keramos, nos manifiesta su derivacion de la palabra griega «cuerno», la primera forma de vaso que emplearon los antiguos para beber.

En efecto en los tiempos primitivos se empleaban para la bebida los cuernos de bobinos, ya sencillos —al principio — luego con toda clase de adornos, cortados en mitad, con una base agregada, etc.

agregada, etc.

Aunque despues estos vasos se hicieron de las mas diversas materias, siempre quedaron con la denominación griega de ke-

Las aplicaciones de la cerámica moderna a los usos de la cocina eran desconocidos entre los griegos i los romanos. En las escenas de la vida doméstica, pintados o esculpidos en los monumentos antiguos, se encuentran vasos i platos destinados a varios usos, para recibir ofrendas, contener flores, frutas, perfumes; pero no se han encontrado todavía vasos antiguos destinados a calentar los líquidos i a cocer los alimentos.

El débil grado de coccion de la cerámica antigua la hacia permeable e impropia para contener i guardar líquidos sutiles i sustancias fuertes. Se podia servir de ella para beber un líquido recien vaciado, pero al cabo de diez horas el agua pura habia atravesado el jarro i caia gota a gota como a traves de un filtro. Las esencias olorosas i las materias grasas embebian los poros de la pasta i brotaban por afuera. Cuando se queria usar los vasos en otros usos era casi imposible limpiar la grasa i quitar el olor pegado a ellos.

Los jarros i ollas romanos, mas compactos i mas cocidos que los griegos, ejipcios i etruscos, fueron empleados con mas ventaja en muchos otros usos; pero su permeabilidad-defecto capital de las cerámicas antiguas-impedia sus servicios en las

necesidades de la vida doméstica.

Los únicos vasos de tierra secados al sol o cocidos al horno en uso entre los antiguos, son las lámparas de aceite, las ánfo-ras, las copas para licores, los azafates para frutas i las urnas para conservar las cenizas de los muertos. Todavía estos productos eran-en su mayor parte-destinados a servir de objetos de lujo en los palacios de los ricos o de ornamentos sagrados en los sepulcros.

Los vasos pintados o esculpidos eran aun el premio que se adjudicaba a los vencedores en las carreras de carros o de caballos i otros juegos públicos en las ciudades de Corinto, Elea, Agrijente, Perusa i Mémfis; objetos de recuerdo cambiados entre huéspedes ilustres i poderosos, i la manifestacion de la mas alta

distincion de los soberanos.

Poetas e historiadores nos han contado los elojios de los contemporáneos sobre el vaso de Nestor, el de Prusias i el de Seleuco, que se hicieron tan célebres en el mundo antiguo.

Los sepulcros de todos los antiguos pueblos esparcidos en toda la superficie del globo, escandinavos, célticos, eslavos, galos, griegos, oscos, etruscos, persas, indios, chinos, mejicanos i peruanos, encierran vasos de tierra cocida, mate o barnizada, cubiertos de ornamentos, signos jeroglíficos, imájenes o inscripciones que tienen rasgos de las costumbres, de la historia i de la relijion de esas comarcas.

Segun los resultados de los últimos descubrimientos, se puede distinguir la historia de las artes cerámicas en dieziocho épocas distintas, que señalan otras tantas fechas en el progreso de esta

importante industria. Estas épocas son las siguientes:

I. Epoca China (2 600 años ántes de J. C.)

II. Epoca Asiria (2 122). III. Epoca Ejipcia.

IV. Epoca Osca (1 500).

Epoca Etrusca (1 301).

VI. Epoca Griega (1 200).

VII. Epoca Romana (715).

VIII. Epoca Italo Griega (500).

IX. Epoca Céltica (100).

Epoca Americana (Año I despues de I. C.)

Epoca Galo-Romana (250).

XII. Epoca Arabe (711)

XIII Epoca Italiana (1 415)

XIV. Epoca Alemana (1 550).

XV. Epoca Francesa (1 547).

XVI. Epoca Sajona ((1 706).

XVII. Epoca Inglesa (1730).

XVIII. Epoca Moderna (1 830).

En estas distintas épocas, a traves de tantos años, el arte industrial de la cerámica camina paso a paso tras su perfeccionamiento. Cada lapso de tiempo señala una etapa de progreso hasta llegar a los principios del siglo pasado en que se inicia la época moderna.

Entónces se introduce el kaolin en la pasta de las porcelanas i se da mas dureza a los barnices. Todos los elementos de la buena fabricacion son encontrados, discutidos públicamente i llevados a la práctica en todos los países en donde hai manu-

En Francia e Inglaterra se ocupan con especial cuidado de la elegancia de la forma, de la pureza i brillo de los colores.

La manufactura de Sèvres, fundada en 1774, i desde ese tiempo mantenida a costa del Estado, aporta grandes perfeccionamientos en la preparacion de las pastas i en el mecanismo del modelaje, en los dibujos de sus estampas, lo mismo que en las impresiones. La correccion de los modelos i la finura de las decoraciones hacen de ella la primera fábrica de porcelana de Europa.

Monsieur Deck encuentra los colores de la loza de Bernardo de Palissy, i renueva el procedimiento de la loza incrustada i

esmaltada, llamada de Enrique II.

El caracter de la fabricación contemporánea consiste en no

tener ningun carácter especial. Se ensaya todo, se imita todo: lo griego, lo etrusco, la edad media, el renacimiento, lo ejipcio, la sajonia, lo italiano.

En lugar de guardar los secretos de fabricacion, los gobiernos, mejor avisados, se apresuran a publicarlos i a ponerlos al

alcance de todo el mundo.

Despues de este breve resúmen histórico, nos ocuparemos, en artículos sucesivos, del importante tema de la cerámica, tratando de su técnica.

Por ahora solo damos en nuestra primera pájina un modelo de jarron, de factura francesa, premiado en una de las últimas esposiciones de Paris.

M. TULAUD.

Herreria i Cerrajeria artistica

Los progresos cada vez mayores en los medios de la produccion del hierro, hacen que este importante elemento de la industria, venga de dia en dia reemplazando a la madera en la edificacion ordinaria

La cerrajeria bien cultivada-lo que se consigue por medio de la difusion del dibujo entre los operarios de este arte, como sucede en todos los oficios,-es uno de los ramos mas importantes que hoi tiene su aplicacion práctica en todas las cons-

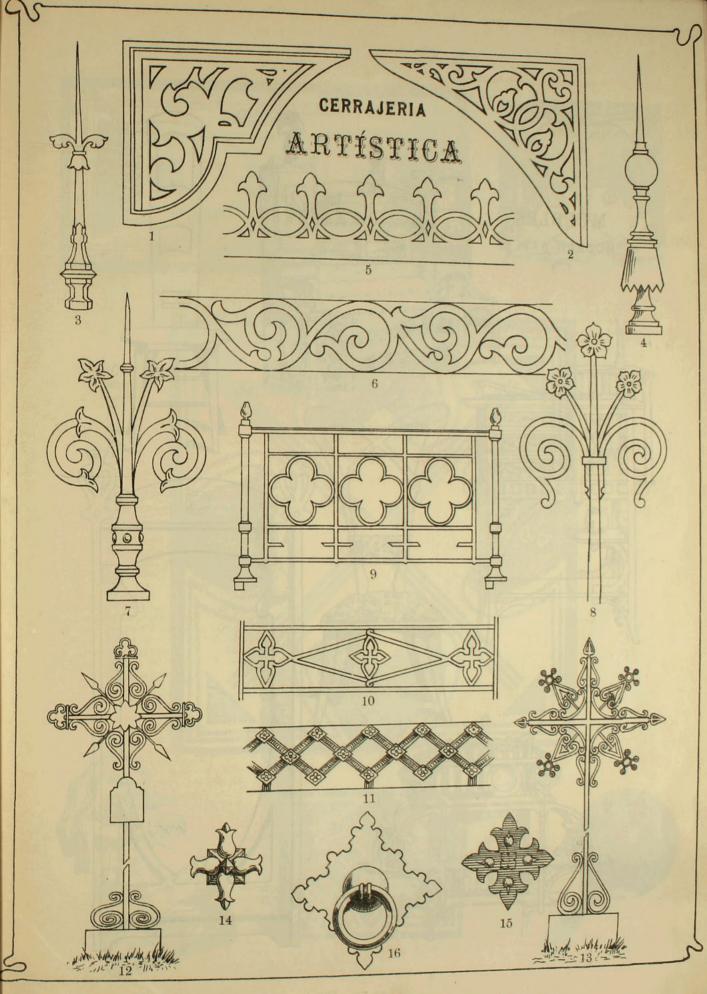
trucciones modernas.

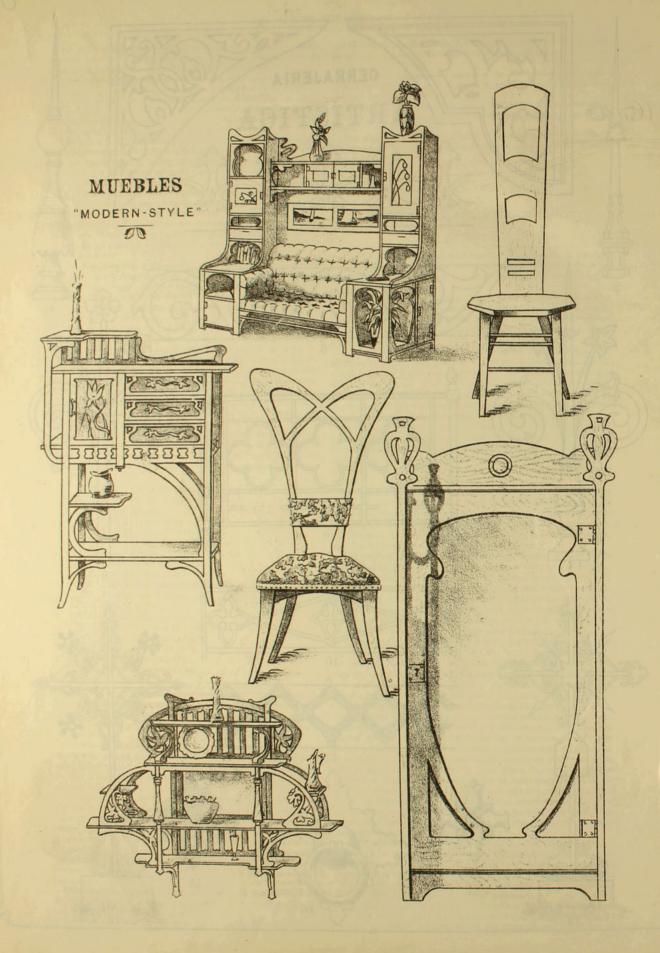
Las obras de hierro son mui hermosas i mui sólidas, i su costo es casi igual a la madera i a otros materiales inferiores; condiciones son estas importantísimas que hoi se toman cada dia mas en cuenta, lo que hace que este elemento sea factor indispensable i llegará a ser casi el único que se emplee con el tiempo en las construcciones de las grandes obras que se levantan con el progreso de los pueblos.

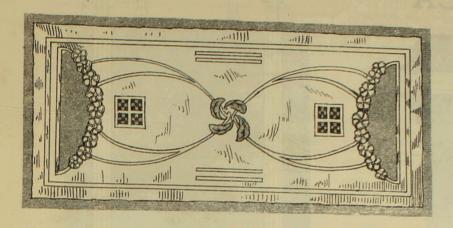
Hoi damos a nuestros lectores una pájina con modelos escojidos de objetos de herrería artística, fabricados al gusto del dia i en los cuales va reunida la solidez i la belleza. Creemos que estos modelos podrán servir a nuestros obreros para ajustar a ellos algunos de los trabajos que se les encomiendan diaria-

Si nuestra Revista sigue una marcha próspera, lo que no dudamos, daremos con todo método varios modelos sobre un mismo objeto de cada arte u oficio, para que así nuestros obreros puedan formar una buena coleccion de cada uno de ellos, que tendrán siempre a la vista para dar a sus obras, nuevas, elegantes i hermosas combinaciones artísticas.

Ménsulas o palomillas.—Son las figuras 1 i 2.—Estas piezas tienen por objeto servir de apoyo o soporte a voladizos, techos, faroles, vigas, emblemas, etc. Jeneralmente se hacen de palastro grueso recortado, formando adornos, i guarnecido de pletinos remachados para darle solidez; otras veces se hacen de varilla o cuadradillo plegado, doblado i encorvado, siguiendo las formas del dibujo, enlazándose en sus vueltas, etc. Hai muchos jéneros i disposiciones sobre estos trabajos.

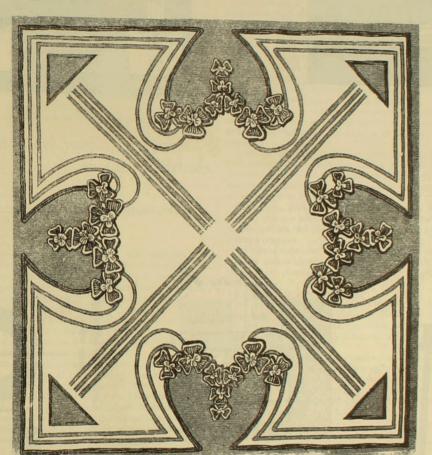

Cresteria - Las figuras 5 i 6 representan estas piezas. Se elaboran con tiras de palastro recortadas en festones i adornos que suclen colocarse colgando o como flecos en el canto i bordes de los aleros de los tejados, marquesinas, etc., sujetándose por medio de clavos o tornillos. Estos adornos embellecen


mucho los edificios por su sencillez i elegancia.


Remates.—Con este nombre se designan a las figuras 3 i 4. Estas piezas se colocan en los puntos mas elevados de las construcciones de hierro, sobre todo si terminan en punta. Los primeros tienen colocacion en todas las construcciones de esta clase, pero los últimos se emplean especialmente en las construcciones relijiosas; son especie de cruces mas o ménos ador-nadas (figuras 7 i 8). Fuera de esta clase de remates existen otros mui difíciles i caprichosos, que se colocan en las obras de construcciones elegantes en armonía con la ornamentacion jeneral de la obra. Estos adornos se forman jeneralmente de varias piezas, que se encorvan i trabajan por separado, combinándolas o reuniendolas despues por medio de redoblones, haciéndose así mas fácil su elaboracion.

Herrajes.-Los dibujos números 14 i 15 son herrajes o clavos, i los mas sencillos entre las diferentes clases que se fabrican de estos adornos. Se sujetan por medio de un tornillo que lleva al esterior una cabeza labrada, i atravesando por el centro del adorno, se sujetan interiormente por medio de una tuerca que entra en su estremidad atenazada.

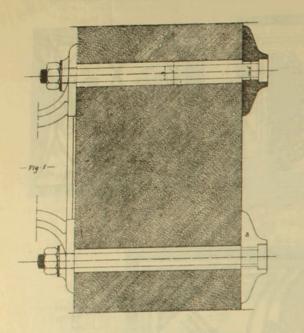
Cruces.—Las figuras 12 i 13 representan dos clases de cruces que pueden colocarse en puntos elevados de construcciones relijiosas o sobre sepulturas en los cementerios, fijándolos en

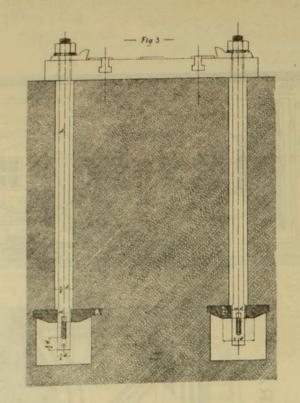


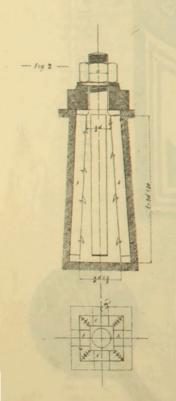
TRABAJOS PARA

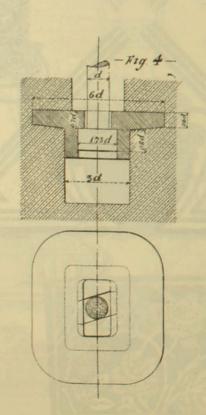
SENORAS

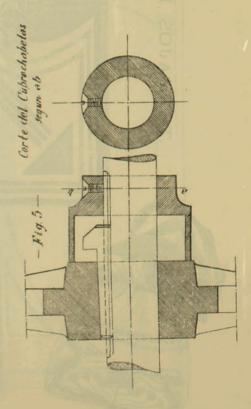
TRABAJOS PARA SEÑORAS










MECÁNICA

estos últimos sitios sobre dados de piedra por medio de espigas

de emplomadas, como se figuran en la lámina.

Antepechos, barandilla, balcones.- Cuando un hueco de ventana tiene el alferzar algo bajo, suele levantarse por medio de una valla, que se coloca empotrada en el muro por la parte esterior de los cierres o vidrieras; esta valla recibe el nombre de antepecho (fig. 11) i se forma por un tejido o combinacion de tuercas, varillas, etc., enlazadas entre si por medio de re loblones.

Cuando se trata de rodear o defender con un obstáculo un objeto, estátua o fuente, etc., se rodea de un tejido metálico que puede ser alto, en cuyo caso lleva el nombre de verja, i si es baja recibe entónces el nombre de barandilla (fig. 10). Estas obras están sujetas por pasamanos en la parte superior; la parte inferior de estos balaustres descansa i se remacha en una solera que se sujeta por varios puntos con plomo al friso o zócalo de piedra que sirve de base.

La figura 9 representa un balcon antepechado de los mas sencialos, pues hai de tres clases: antepechados, volados i corridos; en nuestros próximos números daremos algunos modelos de estos últimos. Sabido es que todos los balcones están destinados a oponer un obstáculo en los huecos de las fachadas de

los e lificios para evitar una caida al asomarse

Manillas o tiradores.—(Figura núm. 16).—Estas piecesitas son tan comunes que nos parece demas dar aquí una descripc on detallada; creemos suficiente insertar solo uno de los mas sencillos i hermosos modelitos de las varias clases que existen

Con esto damos por terminada nuestra primera tarea,

INJENIERO WILSON,

La educacion del pueblo

en las industrias

Su influeucia decisiva en el progreso jeneral

El celebre economista, Leroy-Beaulieu, deja establecido en sus estudios sobre las causas del escaso adelanto de algunas industrias, el hecho seguramente innegable de que las profesiones liberales, algunas veces, en otras, pero en menor cantidad, las artes; i siempre los empleos, ya scan públicos o particulares arrebatan a los oficios manuales su mejor jente.

Citamos la autoridad de Leroy-Beaulieu únicamente como una satisfaccion que damos a los espíritus melindrosos que pudieran dudar de nuestras sanas intenciones, si tal afirmacion hi-

ciéramos por nuestra modesta cuenta i riesgo.

Perque la verdad es que talvez en todo el mundo, pero particul; rmente entre nosotros, el jóven que podria ser un obrero intelijente, capaz de hacer progresar su arte, léjos de aplicar su talento i sus estudios a ese fin tan noble que favoreceria a todo un gremio, prefiere botar sus herramientas de trabajo, reniega de la honrada blusa i va a ser por lo comun un pésimo abogado, un mal emp'eado público o un artista menos que mediocre.

¡Siempre el cterno yerro de preferir ser de los últimos en una esfera que no es la suya, cuando podrian ser los primeros

en la propia!

Es que durante siglos se ha creido que los obreros no deben aspirar a ser sino máquinas elaboradoras encargadas de tal o cual trabajo manual, para el que no se requiere nada mas que un poco de habilidad adquirida por la costumbre de hacerle

Ese es el concepto que se ha tenido de los oficios manuales. Un ejemplo práctico ha venido a sacarnos de tan craso error. Los Estados Unidos de Norte-América, entre otras causas poderosas tambien, debe su inmenso desarrollo industrial a la educacion jeneral de las masas; a la decisiva circunstancia de que alli cada obrero no es simple máquina de elaboración manual, sino un ser intelijente que allega su concurso al perfeccionamiento constante de los medios de ejecutar su trabajo.

Todo obrero yankee lleva consigo un bagaje precioso en su educacion, para llegar al perfeccionamiento de su oficio i si lo acompaña la suerte hará sin dificultades este camino, que ya conoce de antemano, porque muchos de sus compañeros lo han recorrido ya: de aprendiz pasará a oficial, de oficial a maestro, de maestro a mayordomo, de mayordomo a jefe i mas tarde a dueno de fábrica i luego hasta jerente de un formidable trust.

Ninguna de estas situaciones le habra sorprendido, porque para todas estaba preparado; la escuela no se limitó a enseñarle lectura, caligrafía, las cuatro primeras reglas de aritmética i un poco de gramática i relijion, sino que lo puso en camino de perfeccionarse en todos los ramos prácticos de la industria i del

La escuela no quiso hacer de él un poeta ni un filósofo, pero tampoco lo dejó para hombre-máquina: lo enseñó a ganarse la

vida, lo puso en camino de llegar a ser millonario.

Cierto que el yankee no entiende de arte mas que un adoquin; que la música no le suena como no sea mui bailable; que de los lirismos del amor se rien a carcajadas i no pueden entender eso que en otras partes llaman enamorarse; pero a ganar dinero, a formarse hombres por si solos, no les aventaja nadie, gracias a su educacion especialisima.

No necesitan mas de veinte años para formar de un terreno baldio un emporio de riquezas; en treinta años reconstruyeron a Chicago de entre las ruinas de un pavoroso incendio que la arrasó hasta en sus fangosos cimientos; i de lo que ántes era un pantano insalubre, hicieron ellos la primera potencia industrial

Las ciudades se levantan como por encanto, apoyadas en esa asombrosa fecundidad industrial yankee, cuya base principal no es sino la educación práctica de las masas.

El hombre i la mujer, todos se instruyen de un mismo modo; ni siquiera se detienen a examinar si hai entre ellos diferencias de sexo, devorados como están por la fiebre de instruirse para salir de la escuela a ganar dinero, ja hacerse millonarios!

Porque si cada soldado de Napoleon llevaba en su mochila el baston de mariscal, cada obrero yankee lleva en su educa-

cion el jérmen de un potentado de la fortuna,

A su impulso, las industrias alcanzan desarrollo monstruoso; consiguen perfeccionamientos increibles; i ese país, que parece aquejado de elefantiásis, se ajiganta al estremo de amenazar al

Igualarlo no podemos jamas, porque somos de carácter distinto al suyo; i si concedemos que hai necesidad de ganar dinero para sobrellevar agradablemente la vida, no existiria para nosotros esa satisfaccion sin los goces intelectuales completamente apagados en el alma yankee

En cambio, podemos tomar de tal ejemplo la parte proporcionada que nos convenga i esa no puede ser sino la de la educacion práctica del pueblo, todo i mui particularmente de los

gremios obreros.

La democracia cree que el mundo está llamado a ser suyo. Lo será indudablemente, pero cuando cada uno de sus miembros se haya preparado de tal modo que ninguna situacion le sorprenda.

I ese ideal, ¿cómo se realizará?

No han de ser los actuales gobiernos, por supuesto, los que pongan en manos de los obreros las armas con que han de combatirlos victoriosamente; son los obreros mismos los que deben procurárselas, dedicándose al estudio, vigorizándose de cuerpo i puliendo el alma.

Mucha lectura, mucha contraccion al trabajo, mucha propaganda de estas ideas que son semillas de bienestar, i mucha union: he ahi los elementos con que los humildes contribuiremos al progreso jeneral del país i las armas con que obtendrán una solucion victoriosa del gran problema social del siglo los gremios obreros.

> JUAN GARCÍA, De la redaccion de El Chileno

Trabajos para señoras

Los trabajos femeninos parecen determinar en un interior su carácter de instalacion definitiva, el rasgo personal de la dueño de casa que debe presidir en todo hogar. Ninguna mujer, sabiendo el poder de ese encanto que puede emanar de ella i se adhiere a los objetos familiares, tiene el derecho de guardarlo consigo misma en vez de espandirlo a su alrededor.

En esta seccion de El Arte Industrial, procuraremos allegar a nuestras lectoras un escojido continjente de materiales de dibujos modernos, combinaciones de estilos elegantes i al mismo tiempo sencillos, que les puedan servir prácticamente para el hermoseamiento artístico de sus moradas, permitiéndoles dar vida a ese rol femenino que adorna i embellece con su fantasía el cuadro de la existencia cuotidiana.

En medio de los elementos decorativos de los interiores modernos en que el arte de la línea preside con su seductora elegancia, tienen particular valor los trabajos de las señoras. Los modelos que ordinariamente se encuentran a disposicion de ellas carecen de una composicion detenida, de un sentimiento estudiado de conjunto. El trabajo es, las mas veces, minucioso i complicado, procurando hacer valer la habilidad de la ejecutante, lo que tiende a dar a la obra un interes esclusivo de detalle con perjuicio del mismo papel decorativo que debia representar en medio de otros elementos diversos.

I, sin embargo, la mujer de hoi dia ha sabido ya maravillosamente adaptar la decoración de su «toilette» al espíritu moderno. I esa no es la obra sola de las modistas. Ciertos instintos femeninos, ciertas iniciativas atrevidas, así como han inventado los preciosos conjuntos de los trajes de sarao, han encontrado tambien la fórmula perfecta del traje de calle i de pasco, de un corte estremadamente sobrio, que da todo su valor a la línea jeneral, i lleno de interes por su decoración reservada, hecha de galones, de costuras, de pasamanerías de una combinación casi únicamente lineal.

En nuestros modelos hemos querido buscar para los pequenos trabajos de decoración doméstica, en los cuales las señoras pueden emplear sus talentos i sus gustos, el equivalente de este

espíritu moderno ya revelado en el traje.

Tres elementos tienen aqui su importancia: el dibujo, el color

i el procedimiento de ejecucion.

La composicion misma estará comprendida en un espíritu de simplificacion; habrá siempre un arreglo de motivos simétricos i repetidos, único partido posible para que este elemento de decoracion tome un carácter arquitectónico i de «conjunto» entre los demas elementos. Se trata de proceder por formas simples, por manchas francas, cuya voluntad de combinacion i de armonía se impone de léjos. En este dibujo el juego de líneas adquiere un papel mui importante; la línea anuda i encuadra; viene a guiar, encerrar i mantener la decoracion ornamental, compuesta jeneralmente de flores i de hojas.

El color existe a la vez en el fondo del tejido, en las bandas o en los entredoses, en las líneas o en los puntos del bordado; pero hai siempre un efecto de conjunto deseado, sea la coloración monocroma o policroma, de tonalidad dulce o violenta.

Citaremos, por ejemplo, para dar una idea de estas armonías, un mantel de tela blanca con aplicaciones de lazos de seda amarillo oscuro, una bordura de tela amarilla claro i flores de seda de un amarillo intermedio, con puntos de bordados violentos formando cercado; o bien, aun, un camino de mesa de tela inglesa verde, con aplicaciones de tela roja, flores aplicadas en rojo mas claro i lazos de un rojo cardenal.

En cuanto a los procedimientos i a los materiales empleados, son ellos múltiples. Toleran una tela de fondo, blanca o coloreada; bandas de color o marcos, líneas rectas de lazos de diferentes anchos i de tonos variados, aplicaciones de tul, de tejidos diversos i de puntos de bordado. Pero se puede decir que esta diversidad no hace sino aumentar la impresion de simplicidad, pues tiene por resultado suprimir el esfuerzo inútil, de hacer dar por tal o cual materia el efecto que ninguna otra reemplazaria tan bien. Es así, por ejemplo, como los ámplios efectos de tonalidades suaves se producen nó en los puntos bordados sino en los entredoses aplicados.

La reunion de todos estos materiales reclama discernimiento i aun una documentacion especial, puesto que hai algunos que no pueden provenir sino de fábricas particulares; es pues, aun para una señora esperimentada, un trabajo a veces imposible. Es necesario, las mas de las veces, que estos trabajos para señoras sean preparados; es el servicio que procuramos hacer con nuestros pequeños modelos, que pueden dar lugar, por otra parte, a combinaciones diferentes de lineas i colores.

PAULINA

El "Modern-style" en el Mobiliario

El estilo en el mobiliario ha preocupado a todas las sociedades adelantadas, constituyendo en ellas una caracteristica suigeneris que muchas veces ha servido para denominar una época.

Toda sociedad refinada ha puesto sus ojos en los objetos familiares que la rodean, i a medida que el perfeccionamiento se ha becho mas esquisito, las manifestaciones artísticas han ido introduciéndose en los adornos de los hogares, como complemento necesario de las réjias mansiones i palacios.

En la época actual, entre nosotros, priman los mobiliarios europeos, particularmente los estilos franceses; pero ahora comienza tambien a introducirse el «Modern-Style» con sus líneas caprichosas i ondulantes.

En este estilo nuevo hai una mezcla de lo antiguo con lo moderno, con lo del dia, notándose cierta tendencia a unir lo sólido del confortable mobiliario ingles o norte-americano—que pecaria nada mas que por su pesadez—con la elegancia del corte delicado i fino.

Hemos arreglado una pájina de escojidos modelos de muebles «Art-nouveau», combinando lo esquisito del dibujo a la práctica comodidad del objeto.

Así es, por ejemplo, ese atrayente mueble-biblioteca para vestíbulo—el primero de la pájina—que parece convidar al reposo i a la meditacion con un buen libro i teniendo a la mano toda clase de comodidades para colocar platillos con dulces, licores o refrescos, cajas de cigarros etc. Es un mueble particularmente sencillo, elegante i confortable a la vez.

Los otros modelos son dos sillas de vestíbulo o *hall*, tan fáciles de hacer como bellas por su nueva forma; una *etagère* o mesita de *boudoir* monisima i delicada, i un armario de espejo agradable por su sencillez.

Estos modelos, fácilmente aprovechables para los carpinteros i ebanistas, son los primeros de la série variadísima que ofreceremos a los favorecedores de nuestra REVISTA, série que, con el tiempo, formará un álbum por demas útil.

Trabajos tendentes al saneamiento de Concepcion

Entre las obras de saneamiento que pueden efectuarse en esta ciudad, tan hermosa i digna de ser atendida, aparte del alcantarillado que tan triste fracaso sufrió poco há, i que es de esencial i urjente necesidad realizar, podria citarse la desecacion de las lagunas i pantanos que la rodean i que, como la de las Tres Pascualas, está relativamente central, humedeciendo un estenso barrio de obreros i jente menesterosa. Si hácia la laguna se abre una ámplia avenida de acceso i una vez estraida el agua se forma en esa estension un hermoso parque, abarcando parte del cerro de la Pólvora, la ciudad se salvaba de un foco de humedad e infeccion i ganaba el mas bello de los paseos públicos, aparte de que los predios colindantes, i que hoi tienen derecho al lago, cambiarian su fondo en frente con un derecho mas útil i valioso, como seria un parque forestal lleno de atractivos por los mismos paisajes que de ese punto se dominan. Las habitaciones cercanas, casi todas al nivel mas bajo del que tienen las vias i ubicadas en suelo tan húmedo, iríanse transformando poco a poco, salvando muchas vidas i alejando epidemias que tan cruelmente azotan ese barrio.

Esta laguna está a mayor altura que el rio Andalien, donde desagua, i que el Matadero público, en cuyos servicios se emplea el agua de ella. A nadie puede escapar lo peligroso que es esta práctica, pues que en las aguas de la laguna lavan ropa sucia, bañan caballos i otros animales, no existiendo ningun purificador ántes de entrar al Matadero, que está situado relativamente cerca. ¿No sería mas prudente hacer un sacrificio, llevando agua potable a ese establecimiento o aun seria ménos pernicioso que la laguna usar el agua del Andalien, subiéndola a máquina?

A las autoridades locales corresponde realizar una obra tan fácil i tan benéfica, que ella sola les daría nombre i serian recordadas con entusiasmo.

Como ésta existen muchas otras obras que fácilmente pueden realizarse i de las cuales nos ocuparemos próximamente.

WIELANDT.

Mecánica

Trasmisiones Mecánicas de Talleres, Establecimiento, Cálculo i Construccion

PRIMERA PARTE

Establecimiento

& I

CONDICIONES QUE DEBE LLENAR UNA BUENA INSTALACION DE TRASMISION

En jeneral, una trasmision debe ser:

Suave (sin trepidaciones) i

Económica.

Para que una trasmision sea económica debe presentar los caractéres siguientes:

1.º Una lijereza especial, obtenida sin apartarse de las condiciones de seguridad exijidas por los materiales empleados, con el fin de evitar sobre-cargas que pueden perjudicar la estabilidad del edificio que la soporta, pérdidas inútiles de lubrificante i de fuerza motriz (se admite jeneralmente que mil kilos de órganos de trasmision puestos en movimiento absorben un caballo de fuerza).

2.º Una disposicion de montaje i de desmontaje que permita visitar fácilmente un órgano cualquiera, sobre todo aquellos que requieren un mantenimiento especial. Un montaje sólido i bien hecho es una condicion esencial en toda trasmision bien establecida para evitar que los obreros malgasten su tiempo a causa de las paradas i reparaciones frecuentes.

3.º Poseer un engrasaje automático perfecto.

4.º Una disposicion que permita aislar fácilmente i poner en marcha, sin choques, a cada una de sus partes principales a fin de no hacer jirar inútilmente líneas enteras de árboles con todo su equipaje.

5.º Llevar poleas i engranajes establecidos rigurosamente en funcion del trabajo mecánico por trasmitir. Es necesario, ademas, que los engranajes vayan trazados con la mayor precision posible para alcanzar el máximo de rendimiento de que son capaces estos órganos de trasmision.

6.º Tener árboles de trasmision perfectamente calibrados, i en cuanto se pueda de diámetros uniformes para facilitar los repuestos. Las superficies de contacto de los descansos deben establecerse en funcion de las cargas i velocidades dadas a fin de evitar calentamientos i desgastes rápidos.

7.º Estar bien niveladas i bien equilibradas para anular el t:abajo debido a la pesantez o a la fuerza centrífuga, reduciendo así a su minimum las pérdidas del trabajo debidas al frota-

8.º Por último, una trasmision debe presentar una seguridad absoluta contra toda clase de accidentes.

II &

REGLAS JENERALES PARA EL ESTA LECIMIENTO DE UNA TRASMISION

En realidad, es imposible formular reglas absolutas para establecer una trasmision en condiciones determinadas de economía, seguridad i rendimiento; sin embargo, teniendo en cuenta los resultados alcanzados con trasmisiones juiciosamente establecidas i las particularidades que exije cada caso aislado se pueden dar algunas indicaciones jenerales, como las mas convenientes para conseguir los resultados requeridos en las mejores condiciones posibles.

Así se debe:

1.º Disponer todas las líneas de árboles perfectamente rectilíneas, a nivel i en cuanto se pueda, rigurosamente paralelas entre sí i al árbol motor.

Para establecer una línea de árboles perfectamente rectilínea i a nivel, princípiese por fijar sobre cada descanso su altura de ceatro, es decir, la distancia que hai entre el plano inferior de su zapata i el centro del cojinete. Hágase pasar, en seguida, un hilo liviano, fuertemente tendido, por dos puntos suficientemente alejados i tomados al mismo nivel sobre las dos sillas estremas. Hecho esto, móntense las sillas intermedias de modo

que el asiento de cada descanso ocupe su posicion verdadera por debajo del hilo i fijeseles definitivamente. Una vez asegurada la solidez de las fundaciones, colóquese cada descanso sobre su silla correspondiente. Para esto arréglese en cada cojinete un disco semi circular provisto de una muesca que coincida con el centro de cada descanso i colóquese cada uno de estos órganos de trasmision de manera que su eje se confunda con un hilo tendido de un centro al otro de los dos descansos estremos.

Colocados que sean los árboles, la dirección de la trasmision puede verificarse sirviéndose de miras provistas de correderas que sirven para arreglar su altura segun el diámetro del árbol

sobre el cual descansan.

Una mira debe colocarse en cada una de las estremidades de la trasmision por verificar, i una tercera, movible en el sentido de la lonjitud de los árboles, debe servir para efectuar la ope-

Para esto puede emplearse tambien el procedimiento siguiente: tiéndase una cuerda por debajo de la trasmision, paralelamente a su direccion. Un hilo a plomo colocado tanjencialmente al árbol i en puntos diversos debe caer a distancias iguales de la cuerda, si el diámetro de la trasmision es la misma en toda su lonjitud, o a distancias variables segun el diámetro del trozo correspondiente.

Ahora, por lo que respecta a la horizontalidad de la trasmision, puede verificarse mui fácilmente sirviéndose de un nivel ordinario de burbuja de aire.

2.º Montar las sillas, consolas i descansos sobre soportes sólidos e insensibles a los efectos dinámicos de la trasmision.

3.º Colocar las líneas paralelas de trasmision a distancias proporcionadas a la potencia por trasmitir. En el comando por correas conviene adoptar las siguientes distancias:

Para trabajos de poca consideracion-hasta 20 caballos de fuerza-3 metros a lo ménos;

Para trabajos superiores—hasta 100 caballos—4 m; 500 a 5

Para trabajos superiores aun, de 5 a 7 metros.

Para dinamos i electro-motores, de 5 a 6 metros segun la potencia para trasmitir.

Cuando la distancia que hai entre los dos árboles por comunicar pasa de 8 metros i no se puede colocar una trasmision intermediaria, es necesario reemplazar las correas por cables de cáñamo o de cuero i las poleas de llanta bombada por poleas de garganta.

4.º Adoptar como relacion entre los diámetros de dos ruedas dentadas o de dos poleas que se conducen un valor inferior a 6.

5.º Disponer los engranajes cilíndricos que deben poner en movimiento a los árboles vecinos lo mas cerca posible de los descansos i de los soportes ríjidos a fin de que éstos absorban las vibraciones que pueden producirse en la trasmision por las trepidaciones de estos engranajes. En las trasmisiones que llevan engranajes cónicos, epizoidales o hiperbólicos, esta precaucion es mas necesaria aun.

Es conveniente, en algunos casos, para evitar las presiones sobre los apoyos, montar los descansos de cada uno de los árboles sobre un zócalo de base única sólidamente establecido. Los árboles deben aislarse en este caso cerca de los engranajes, por un machon de dilatacion.

Los machones de acoplamiento deben colocarse tambien mui cerca de los descansos, a una distancia de 30 a 40 milímetros a lo sumo. Es conveniente no colocar poleas que deban trasmitir un trabajo algo importante mui cerca de estos machones

Las poleas de ataque u otras de grandes dimensiones deberán colocarse siempre mui cerca de un descanso, teniendo cuidado sí de conservar en cuanto se pueda un espacio superior al ancho de la correa para evitar su destruccion cuando por algun motivo haya necesidad de botarla. El mismo espacio deberá dejarse entre dos poleas contiguas.

6.º No unir las secciones de la trasmision por órganos que trabajen por choques, para evitar la destrucción de los árboles i de los engranajes. Los acopladores de friccion son los mas

convenientes en este caso.

7.º Fijar las piezas que descansan sobre la albañilería en las partes mas resistentes i sobre superficies de apoyo anchas i sólidas. Cuando la fijacion de la pieza debe efectuarse sobre un muro, la disposicion indicada por la Fig. 1 es mui conveniente. Para que la traccion ejercida por el perno se trasmita a una gran parte del muro se hace descansar su cabeza sobre una pieza redonda a de fierro fundido. Algunas veces se reemplaza esta pieza redonda por una placa cuadrada o alargada. El diámetro que se da ordinariamente a este plato es de 7 a 8 veces el diámetro del perno.

Cuando las piezas deben fijarse por su base, los pernos de fundacion, Fig. 2, son mui empleados. El ancho de la estremidad

superior del agujero debe ser bastante grande para permitir la introduccion del perno cuya fijacion se hace encajando con fuerza las cuñas A i colando en seguida cimiento o plomo. Algunas veces se suprimen las cuñas, rellenándose simplemente el agu-

jero con algunos de los materiales antedichos

Cuando las fuerzas en accion son considerables, los pernos de fundacion son incapaces de producir un ensamble bastante seguro. En tal caso, la *anclas de fundacion*, Fig. 3, son mui convenientes. Los conductos o nichos A sirven para introducir o quitar las chabetas B cuando por algun motivo sea necesario quitar los pernos. En los casos en que no sea posible practicar estos nichos, la disposicion indicada por la Fig. 4 da mui buenos resultados. El perno se encaja por la parte superior i se le hace tomar su posicion definitiva por un cuarto de vuelta mas o ménos. Las proporciones que conviene dar a cada una de las piezas están indicadas sobre las figuras

8.º Suprimir o por lo ménos cubrir convenientemente, todas las partes salientes, tales como talones de chabetas, pernos, tuercas, etc., que sea necesario colocar sobre los órganos móviles, para evitar accidentes cuando funcionan. Las poleas, volantes i ruedas dentadas deben cubrirse con una tapa o caja cuando puedan estar al alcance de los obreros. Una disposicion mui conveniente para cubrir las chabetas es la indicada por la Fig. 5. En casos de dificultad para introducir el cubre chabetas deberá

emplearse entónces uno en dos piezas.

A. DEL VALLE E.

Escuela de Artes i Oficios en Chillan

Los diarios anunciaron en dias pasados la creacion de una escuela de mecánicos i carpinteros para Chillan, la cual comenzaria a prestar sus servicios en el próximo mes de Marzo del

Al fin, el Gobierno trata de demostrar a nuestros hijos que tambien tiene para ellos un momento de atencion que dedicarles. Comprende que es menester atender tanto al rico como al pobre, pues que todos son hijos de una misma patria, i que el pueblo, ese pueblo manso, sumiso i tranquilo, que jamas altera la paz de sus gobiernos; ese pueblo patriota i valiente que empuña primero que nadie las armas para volar a los campos de batalla i dar su sangre por la patria i su bandera, necesita muchos i mui buenos maestros, muchas escuelas primarias i normales, de artes i de oficios, de industrias i de comercio, si es verdad, que se desea realmente su bienestar, su instruccion, su progreso i adelanto.

Saben mui bien nuestros hombres dirijientes que sin estos elementos es inútil alcanzar el engrandecimiento, la prosperidad, los adelantos i progresos maravillosos con que nos deslumbran otras naciones, otros pueblos ántes mas pobres i atrasados

que nosotros

Establézcanse, pues, en nuestro suelo escuelas i talleres en donde se cultive el alma i se fortalezca el cuerpo, en donde se adquieran al mismo tiempo las nociones del saber humano i el oficio noble que dignifica al hombre acercándolo a la imájen de su Creador!

Inspírese nuestro jóven Ministro de Instruccion Pública en el ejemplo que cada dia que pasa dan al mundo los Estados Unidos de América, i proporcione al pueblo-tal cual lo hacen los sabios gobernantes de aquella gran nacion-la luz que les falta a su espíritu intelijente, i entónces los hijos de la patria chilena probarán al mundo que ellos, educados e instruidos, son tambien capaces de llevar a la realización obras tan grandiosas i dignas de llamar la atencion universal, i conquistar renombre, autoridad i respeto, honor i glorias que venir a depositar en los altares de la patria querida.

Tributemos, pues, a nuestro Gobierno respetuoso homenaje por esta sabia i justa disposicion gubernativa, i El ARTE IN DUSTRIAL felicita particularmente al noble i progresista pueblo chillanejo por tan preciosa obra que acaba de adquirir para sus

R. TAPIA.

a los maestros

Solo espera la Administracion de esta Revista se publique el nuevo programa de instruccion primaria para ceñirse a el, i poder dar principio a la publicacion de modelos que sirvan de guia para la enseñanza de tan importante ramo en las escuelas públicas.

Miscelánea

Coloracion artificial de las flores

EN LA PLANTA.-Los tres colores: negro, verde i azul, se encuentran rara vez en las flores. Siguiendo procedimientos especiales, se puede conseguir que las flores adquieran estos

Para el negro se toma el fruto del olivo cuando está bien

seco i se reduce a polvo impalpable.

Para el verde, el jugo de la ruda; i para el azul, los peralos de la flor de lis, que crece en los campos de trigo; se pulverizan despues de secas

Al emplear estas sustancias, se mezcla aquella cuya coloracion ha de comunicarse a la planta, con estiercol de ovejas, vinagre i sal, de modo que la proporcion de la materia colorante sea un tercio de la masa. Esta, mui espesa, se pone bajo las raices de la planta; se riega con agua teñida de la misma materia colorante; en las demas se cuida la planta como de ordina-

Con el verde i azul se sigue igual tratamiento. Se prepara la tierra con cuidado, i la planta se preserva del rocío i esponiéndola al sol.

La coloración púrpura resulta preparando la pasta con palo del Brasil.

El carbon vejetal da mas intensidad al color de las dalias,

El carbonato sódico vuelve rojos los jacintos. El peróx do de hierro (que se disuelve lentamente) da una coloración mas intensa que el sulfato de hierro.

Recetas Industriales.

1. Betun para el Calzado. Este betun es caro, pero tiene la ventaja de no estropear el cuero, como sucede con los que contienen ácidos minerales.

Se pone en un litro de cerveza 60 g de negro animal, 30 g de azúcar cande, 30 g de goma arábiga, todo ello en polvo finísimo, i 120 g de cera vírjen. Se hierve a calor suave durante diez minutes, se separa del fuego i se continúa mezclando hasta que esté frío.

2. Se ponen con 5 litros de agua 120 g de jabon en pedazos, 60 de carborato de potasio; se disuelve a la temperatura de 40°, despues se agregan 500 g de cera vírjen, ajitándo hasta obtener una emulsion densa, i se añaden las siguientes sustancias en polvo mui fino:

	Negro de huesos	1 000	g
	Azúcar	150	2
	Goma arabiga	60	18
se	mezcla, etc.		

Para Calzado Amarillo.

a)	Esencia de trementina	ı
	Aceite de ricino	2
	Vaselina	Š
	Cera amarilla	Š
b)	Aceite de linaza	2
	Cúrcuma en polvo	2

Se disuelve la cera amarilla en la esencia de trementina, i se agrega despues el aceite i la vaselina. Se deslie aparte la curcuma en aceite de linaza. Se mezclan a) i b) ajitando constantemente. Este betun se estiende con un paño fino i seco,

UNIVERSITARIA

OFICINA: BANDERA, 41-CASILLA, 1770-TELEFONO 1764-TALLERES: GAY, 1765

SANTIAGO DE CHILE

IMPRESIONES DE OBRAS I FOLLETOS

Memorandums, Facturas, Circulares, Recibos, Guias,

Sobres i Blocks Timbrados i en Blanco.

Tarjetas Comerciales, de Visita i Bautizo, & &.

Trabajos de lujo i a precios equitativos

Maquinarias de primer órden

i excelentes materiales tipográficos.

S. A. GARCIA VALENZUELA

(Propietario)

EL ARTE INDUSTRIAL

REVISTA MENSUAL ILUSTRADA

sobre las aplicaciones prácticas del dibujo en las industrias en jeneral, talleres, escuelas i hogares

Suscriciones: por un año \$5- por seis meses \$8- número suelto \$0,50

COLABORADORES

Alberto de la Cruz Montt, Arquitecto.

Pedro E. Wielandt, Injeniero del Plano de Santiago.

Federico Thum, Arquitecto, Injeniero i profesor en el Instituto Nacional.

Manuel Tulaud, Secretario de la Dirección de Obras Municipales.

A. del Valle, Profesor de Dibujo de Máquinas en la Escuela de Artes i Oficios.

Aquilino García, Profesor de Dibujo Ornamental en la Escuela de Artes i Oficios i Dibujante de la Dirección de Obras Públicas.

Carlos Lacoste, Jefe de la Sección de Mecánica de la Escuela de Artes i Oficios.

Isaias Aguila, ARQUITECTO.

Alfredo Gacitúa, Injeniero de la Dirección de Obras Municipales. SRTA. Virjinia Alvarez, Profesora de Dibujo.

Lautaro Ponce, Doctor.

Luis Felipe Lazo, Injeniero de la Dirección de Obras Municipales.

Ramon Laval, Secretario de la Biblioteca Nacio-Nal i profesor de caligrafia de varios Liceos i Colejios.

Agustin Palma Riesco, Jefe del Salon de Lectura de la Biblioteca Nacional.

Heraclio Fernandez, DIRECTOR DE «EL CHILENO».

Erasmo Arellano. Profesor, Secretario i Jerente de «La Educación Nacional».

Aage G. Hald, Jefe de la Sección de Electricidad de la Escuela de Artes i Oficios.

Antonio Santibáñez Rojas, Visitador de Escuelas de Valparaiso.

Toda correspondencia, suscriciones, pedidos de numeros sueltos, etc., etc., diríjanse al administrador de

El Arte Industrial, Imprenta Universitaria. Casilla 1770

Fábrica Nacional a Vapor

DE

SACOS DE PAPEL

DE

Maturana i Cáceres
23 GARCIA REYES 25 ——— CASILLA No. 670

SANTIAGO

IMPORTACION DIRECTA DE EUROPA

PAPELES DE PRIMERA CALIDAD

SASTRERIA

DE

Clodomiro Villarroel M.

INDEPENDENCIA 389

(frente a Pinto)

SANTIAGO

ESPECIALIDAD EN CASIMIRES FINOS

PARA

TRAJES DE CABALLEROS I NIÑOS

CORTE ELEGANTE I GARANTIDO PUNTUALIDAD EN LA ENTREGA

BODEGA DE VINOS

DE CAUQUÉNES

Estos vinos por la calidad del terreno que los produce son los mas ricos en tanino natural que existen en Chile, siendo por consiguiente los vinos mas estomacales i cordiales por excelencia.

Debido a ello es la fama que tienen los vinos de Cauquenes desde que en Chile existe la viña.

En la única parte que se espenden por MAYOR i MENOR es en la AVENIDA O'HIGGINS 1261.

SANTIAGO

TORNEOS

Cóndor 1380, entre Duarte i Nataniel santiago

Única casa esclusiva i la mas estensa en Torneos, Recortes, Calados i Molduras. Corbatones i demas piezas para muebles de asiento.

JULIO TIXIER.

NOTA.—Escaleras de distintos tamaños hai en venta

constantemente.

El Arte Industrial

MANUEL TULAUD

REVISTA MENSUAL ILUSTRADA

R. TAPIA ROJAS

Año 1

Santiago de Chile, Junio de 1908

N.º 2

Don Agustin Edwards

Pocos son los hombres que a los veintiseis años de edad puedan presentar una biografía tan interesante como el diputado por Quillota, Don Agustin Edwards MacClure. Es cierto que el prestijio de su nombre i de su fortuna le abrian caminos escepcionalmente fáciles para servir honrosamente a su país; pero es preciso reconocer

que el señor Edwards ha superado por su actividad, su patriotismo i su talento, a las mas halagüeñas esperanzas que hubieran podido fundarse en el prematuro comienzo de su carrera.

Despues de sus primeros viajes por Europa, el señor Edwards, se encontró casi un niño, a la muerte de su padre, con las responsabilidades que dan la fortuna i la situación cuando se tiene la conciencia formada en una escuela de cumplimiento del deber social de trabajar i de hacer el bien.

Tomó con especial empeño la empresa de *El Mercurio*, que su padre habia legado a su tres hijos varones i cuya dirección quedaba totalmente en sus manos. Desde el primer momento,

mostró en ella su espíritu de progreso i su actividad vertijinosa. Levantó suntuosos edificios para instalar la imprenta, encargó maquinarias nuevas, introdujo en Chile las linotipias, creó los servicios de informacion estranjera que hasta entónces solo existian en Chile en forma rudimentaria i dió a sus diarios de Santiago i Valparaíso el rumbo comercial e industrial de la gran empresa norte-americana i europea.

La fundacion de *El Mercurio* en Santiago con sus dos ediciones, seguida no ha mucho de una nueva edicion en Valparaíso, son obras esclusiva i personal suya.

En su último viaje a los Estados Unidos estudió a fondo todo lo relacionado con la publicación de revistas ilustradas, adquirió maquinarias, trajo talleres completos de fotograbados e impresion de grabados, que son los mas perfectos en su jénero que han venido al país, i lanzó la revista Zig Zag, que es sin duda una honra para las artes gráficas en Chile.

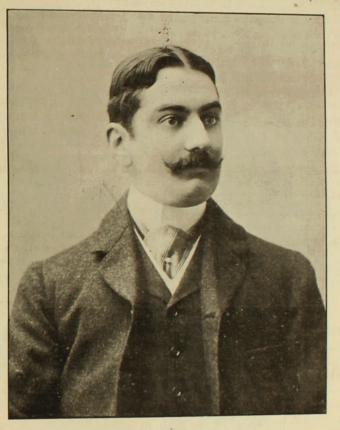
En la direccion de los vastos negocios de su familia, el señor Edwards ha dado a las empresas un rumbo nuevo mas moderno, mas abierto i mas útil para el país.

Ha introducido maquinarias nuevas en los establecimientos de fundicion, ha dado impulso estraordinario a la ganadería en los fundos i ha poblado a Santiago i Valparaíso de edificios valiosos.

No es posible encarecer la importancia de estos trabajos que movilizan el capital i distribuyen utilidades entre los profesionales i los millares de proveedores i de obreros que hallan trabajo en esas industrias i construcciones. Sus ideas a este respecto, difieren por completo

de las antiguas tendencias usuales en nuestro país. Quiere la inversion de los capitales en obras que den trabajo al pueblo, progreso al país i bienestar a todos.

Como político, ha tomado parte principal en la Cámara de Diputados en los debates financieros i ha impulsado i propuesto ideas tales como el fomento de las habitaciones obreras hijienicas, las primas deesportacion para nuestros productos, la reforma de la lei electoral i otros asuntos de interes popular i jeneral.


Su actuación como Ministro de Relaciones Esteriores en 1903 fué mui brillante, pues dejó totalmente terminado el pacto con Bolivia, que solo se logró despachar algun tiempo

despues, pero cuyas estipulaciones, casi testualmente, son las que se acordaron en las conferencias que el señor Edwards celebró con el Ministro de Relaciones Esteriores de Bolivia Don Claudio Pinilla.

Puede decirse que la característica de este distinguido jóven es su actividad incansable, su amor al trabajo, la necesidad que se le ve de estar siempre ocupado en obras de vasto alcance i de utilidad jeneral. Don Agustin Edwards siente esta lei humana del trabajo, que a todos nos manda allegar esfuerzos para el progreso jeneral, de una manera imperiosa. Si no hubiera nacido rico, seguramente se hubiera ganado pronto una fortuna con

Nuestra modesta Revista, leal amiga de nuestros obreros, ha tenido tambien la suerte de recibir la jenerosa ayuda de este eminente benefactor i servidor público, tan amante de todo aquello que significa el bienestar del pueblo i el engrandecimiento i progreso jeneral de la patria.

El Arte Industrial agradecido de su jóven i noble protector coloca su distinguida figura en su pájina de honor.

a nuestros abonados

Dos Palabras

dia en que apareció el primer número de esta Revista, tiempo que el infrascrito ocupó en recorrer todos los talleres modestos i grandes fábricas de Santiago, Valparaíso, Concepcion, etc., con el objeto primordial de esplicar personalmente a cada obrevo el fin grandioso que para ellos se persigue con dicha publicacion, solo hoi ha podido aparecer el segundo número de EL ARTE INDUSTRIAL, prometiendo a sus abonados que, estando ya su vida, su existencia asegurada, tan necesaria como preciosa es para el obrero, su marcha se regularizará ya desde este segundo número, apareciendo los subsiguientes con toda puntualidad en la primera quincena de cada mes.

Estando la existencia de esta Revista asegurada, mi primordial idea es satisfacer muchos deseos espresados por personas cultas; por millares de obreros ansiosos de saber: hombres modestos que buscan *orientaciones* enel vertijinoso movimiento científico contemporáneo; por aquellos que desean imponerse de las cosas mas salientes, de los descubrimientos mas modernos i mas importantes, de los resultados maravillosos que tienen mayor trascendencia en la enorme labor científica de nuestro tiempo, etc., i por eso no dudo que, cumpliendo tales deseos, las columnas de El ARTE INDUSTRIAL para todos serán útiles i por todos han de ser aceptadas; éste será, pues, mi programa i a él ajustaré el plan de la publicacion, teniendo especial cuidado de difundir el dibujo en todas sus manifestaciones prácticas.

Ahora, en el desarrollo de nuestro plan tendremos que ir poco a poco; no es fácil plantearlo todo de golpe, ni en corto tiempo, ménos en nuestro país donde se tropieza con grandes i numerosos obstáculos, principalmente por falta de bibliotecas bien nutridas de publicaciones modernas. Pero vamos llenos de buena voluntad, dispuestos a no rehuir sacrificio alguno. Si la opinon responde, marcharemos de prisa; solo en ella habremos de apoyarnos, i sus fuerzas impulsivas regularizarán nuestra marcha.

Creemos necesario tambien decir que EL ARTE INDUSTRIAL no tiene por mision solo divulgar los principios de una escuela determinada; nuestros colaboradores son dueños de la mas amplia libertad de criterio, siempre que tengan en vista nuestros propósitos, que son el jeneralizar los modernos adelantos de las ciencias i las artes. La ciencia no puede ser sectaria; ha de inspirarse siempre en la razon, esto es, en la verdad i la justicia, despreciando toda imposicion pasional.

La Revista no se ocupará jamas, bajo ninguna influencia de difundir ideas políticas i relijiosas, sino, solo, de vulgarizar los luminosos secretos de la ciencia, del arte i de la industria, i de este modo hará mas fácil al hombre la lucha en favor de su existencia.

R. TAPIA ROIAS

Electricidad

Figura Número 1

Desde que el profesor aleman Simon demostró en 1898 que una lámpara eléctrica de arco voltáico reproducia los sonidos trasmitidos por un micrófono i que M. C. Leonard repitió en Paris él mismo, se han repetido i perfeccionado aquellas esperiencias.

La disposicion que representa esquemáticamente nuestra figura sirve para reproducir el esperimento en favorables condiciones i suprimiendo los inconvenientes que presentan los otros dispositivos, por dejar independiente el circuito del arco i el circuito telefónico.

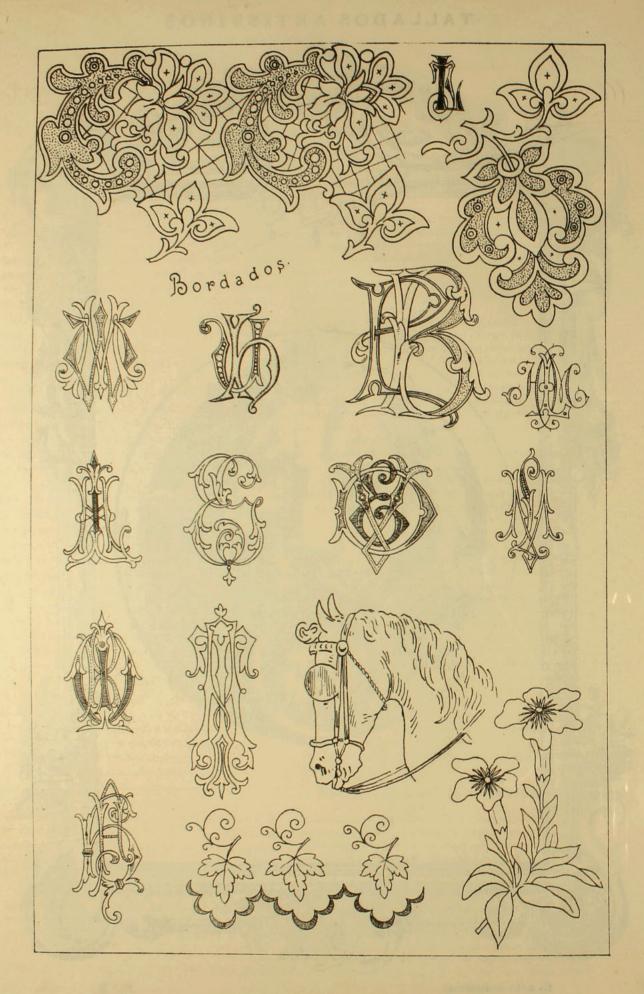
El circuito telefónico que obra sobre el arco comprende la pila o acumulador p, de algunos elementos, el trasformador de induccion B, i el telefono trasmisor G.

El circuito del arco comprende la pila P (acumulador o dinamo, por mas que conviene mejor la pila porque da el arco mui silencioso), el hilo secundario de la bobina cuyos bornes terminan en 3 i 4 i cuya seccion ha de poder soportar, sin calentamiento, corrientes de 10 a 12 amperes, i el reostato D. Los carbonos del arco H deben ser bien homojéneos, por mas que algunos aconsejan lleven un eje central metálico; el espejo metálico E sirve para aumentar la intensidad del sonido en una direccion determinada.

Si se habla o canta delante del trasmisor G, el arco reproduce la palabra o el canto i, reemplazando el teléfono por un potente micrófono amplificador de Gaillard o Ducretet se percibe perfectamente la voz del arco en un gran local, aun cuando do se oyen mejor los sonidos agudos que los graves. Si se disponen varirs lámparas de arco en serie, todas ellas reproducen los mismos sonidos con el mas perfecto unísono.

Para invertir la esperiencia, esto es, para hacer servir el arco de trasmisor, basta hablar fuerte en un tubo metálico colocado delante del arco voltaice, con lo cual las vibraciones producidas en el arco producen variaciones en la corriente del circuito de la lámpara, i por ésta reproduccion de la palabra en el teléfono. El teléfono K del grabado es receptor i puede ser empleado simultáneamente con el trasmisor G, para lo cual basta manejar la llave del conmutador L, abriendo o cerrando el circuito telefónico mediante el interruptor R.

Se han indicado muchas aplicaciones, a cual mas curiosa i de carácter industrial o doméstico, de estos aparatos. Por ejemplo, el empleo de la lámpara parlante en las estaciones ferroviarias para indicar a los viajeros la hora de la salida, nombre de las estaciones, etc. Podria asimismo utilizarse por un orador que tuviera que decir al público verdades desagradables i no quisiera esponerse a los furores demasiado *espansivos* del auditorio. Pero no hai duda que estas aplicaciones son mas ideales que prácticas, pues la *vos* del arco parlante es aun mui débil i defectuosa.


Figura 2. Avisador eléctrico de incendios

Los avisadores de incendios tienen por objeto indicar por medio de un timbre, campana u otro medio llamativo la produccion de un incendio; de aquí puede apreciarse la indiscutible necesidad de los mismos en todos aquellos lugares en que hai algo que defender contra el voraz elemento.

Los sistemas adoptados son variados, segun los inventores, aun cuando casi en todos se aprovecha la elevacion de temperatura que acompaña la produccion de un incendio, para cerrar el circuito de un timbre eléctrico. Uno de ellos consiste, como indica el esquema adjunto, en un tubo termométrico que tiene soldado en la parte inferior del depésito un hilo metálico que costituye uno de los reóforos; el tubo está abierto i por su estremo penetra una varilla metálica que puede subir

El arte industrial

o bajar a voluntad, mediante un tornillo de presion constituyendo el otro reóforo.

Su funcionamiento puede ya comprenderse; llena de mercurio la cubeta i una porcion de tubo, se pone la varilla móvil a unos 4mm del nivel del mercurio; al orijinarse una elevacion de temperatura, aunque solo sea de 10°, cerrará el circuito el aparato, i por lo tanto, hará funcionar el timbre con el cual estuvieren unidos sus reóforos.

Figura 3. Conversor o enderezador electrolítico de corrientes alternativas

Los dos factores fundamentales de la enerjía eléctrica, intensidad i tension, pueden cambiarse con tal que no sufra variacion el producto; de modo que siendo E la enerjía, I la intensidad i U la tension.

i se comprende que si È vale 1 000 volts, por ejemplo, con una corriente de 5 amperes i 200 volts, no alterará la enerjía al transformarla en otra de 10 amperes i 100 volts, puesto que en ámbas se verifica.

Los aparatos que sirven para esta transformacion se llaman trasformadores estáticos cuando se aplican a las corrientes alternativas i rotatorios si transforman una corriente continua.

Pero tambien se puede transformar una corriente alternativa en una contínua, i este interesante cambio se lleva a cabo mediante aparatos llamados *conversores* o enderazadores de corriente, porque en realidad hacen de la corriente de sentidos periódicamente contrarios una corriente contínua, esto es, dirijida siempre en el mismo sentido. Estos conversores pueden ser *heteromórficos* i *homomórficos* segun que cambien o nó los dos factores de la enerjía.

Así, un conversor que cambie una corriente alternativa de 2 000 volts i 50 amperes en otra contínua de la misma tension e intensidad es un conversor hor o núrfico, pero si ademas de convertirla en continua le diera una tension de 500 volts con una intensidad de 200 amperes seria, heteromórfico.

El conversor electrolítico es de los heteromórficos i se funda en la fuerza electromotriz i capacidad de polarizacion de electrodos i electrolitos de especial naturaleza.

Para producir electrolísis, o sea descomposicion mediante la corriente eléctrica, se requiere que ésta sea continua, pues la corriente alternativa combina por síntesis, al cambiar de sentido, los elementos que su contraria habia producido por descomposicion. Sin embargo, ya Maiche habia ideado uua disposicion para aprovechar una sólamente de las dos corrientes contrarias que se producen en las alternativas. Los señores Pollak i Graecen han perfeccionado este aparato, que es una verdadera válvula eléctrica (toda vez que sólo permite el paso de las corrientes eléctricas en un sentido) tal como representa nuestro grabado. El vaso M de hierro sirve de electrodo positivo i en él va una solucion saturada de fosfato amónico; N es un tubo formado con una aleacion de aluminio, zinc i cobre, que se apoya sobre el disco de caucho D. Enviando una corriente continua al aparato, se descompondria el fosfato en oxíjeno i ácido fosfórico, que se dirijirian al anodo, que si es de aluminio, se recubrirá de una capa de alúmina (óxido de aluminio Al₂ O₂); pero, que si es hierro, no ocurrirá nada por ser alcalino el electrolito i la corriente pasaria libremente.

De modo que el aluminio cierra el paso a la corriente que entra por él; pero, en cambio, la deja libre a la corriente que entra por el hierro M.

En cuanto al hidrójeno i al amoniaco que se producen tambien en la electrolisis del fosfato amónicoi que se dirijen al catodo o electrodo de salida de la corriente, sirven para reducir la alúmina que se forma cuando la corriente penetra por el hierro. Entendida la teoría de la válvula eléctrica, se comprenderá cómo funciona el conversor electrolítico que representan las otras dos figuras. Por el esquema se comprende que si en el circuito alternativo M N se intercala una válvula eléctrica, las corrientes que entran por el hierro encontrarán paso libre, pero, lo encontrarán cerrado las que penetren por el aluminio. Así, pues, se tendrá que, estando detenidas las corrientes que van en uno de los dos sentidos opuestos, sólo queda una que es continua. Claro está que con ello se pierde la mitad de la enerjía.

La disposición práctica que indica la otra figura, permite ver perfectamente la marcha de las corrientes, sin pérdida, senaladas cuidadosamente por medio de flechas. Por M N penetra o sale la corriente alternativa que se aprovecha como contínua en P para cargar un acumulador o mover un motor eléctrico de corriente contínua.

Para poner en marcha el aparato se emplea un carrete de auto-induccion. El rendimiento es de 70 a 80 por 100, debiéndose la pérdida al*calentamiento del electrolito. El mantenimiento consiste en reemplazar el electrolito de vez en cuando. El aparato es adaptable a las corrientes alternativas de 1 a 140 volts.

Mexela para reunir las capas sucesivas de guiapercha que recubren los cables eléctricos

Se emplea con este objeto la mezcla Chatterton, que consta de:

Alquitran de Estocolmo	1	par
Resina	1	3
Gutapercha	3	

Mecánica (1)

(Esplicacion de las diferentes piezas que dicha pájina contiene).

Tigura 1. Ganchos para remolques

El ilustrado oficial de la armada española don Manuel García Diaz ha ideado un gancho para remolques de embarcaciones menores, que ha dado resultados verdaderamente prácticos, pues facilita notablemente las operaciones de dar i largar remolques, cosa que con los procedimientos ordinarios daba lugar a frecuentes colisiones de los botes remolcador i remolcado, bien entre sí, o con otros botes o muelles, por tener que parar el remolcador, lo cual no es necesario con el gancho que vamos a describir.

De su sencillez dan idea las figuras signadas con el número 1. Consta de dos piezas principales: la primera esta formada por dos gualderas de acero forjado G, que forman una sola pieza con el anillo A, por el cual pasa el pié del gallo, (cordel o cable), formando dos ramales, cuyos estremos libres van firmes al bote remolcador; estas gualderas tienen, en sus estremos E, dos orificios E' por los que pasa un perno P con cabeza C i tuerca T, sobre el cual la segunda pieza principal, que es el gancho propiamente dicho a, b, c, d, e; los estremos de las dos gualderas van sólidamente unidos por un pasador remachado p, que limita el jiro del gancho a, b, c, d, e, cuando este jira abriendo el gancho. En la ranura RR' de las gualderas puede resbalar el pasador p' del pequeño grillete M, que se maneja desde el bote remolcador, por medio de una piola o cordel delgado.

Una vez colocado el gancho por la popa del bote remolcador, para sujetar el remolque no hai mas que colocar el grillete M en su estremo izquierdo, i el gancho a, b, c, d, e, queda abierto por su propio peso. Se coloca el cabo del remolque en el gancho, i haciendo jirar la pieza a, b, c, d, e, se corre el grillete M, a la derecha, para que impida el jiro de la pieza anterior; queda así cerrado el gancho. Para soltar el remolque,

⁽¹⁾ En el próximo número vendrá un estudio especial sobre máquinas a vapor, por el señor Carlos Lacoste.

se tira de la piola del grillete M, con lo que éste se corre a la izquierda, quedando libre la pieza a, b, c, d, e, que, con la misma traccion del remolque, jira soltándolo i quedando abierto el gancho. Esta última operacion se puede hacer a toda velocidad

Los ganchos de esta clase, hechos para el «Lepanto» ila Comision Hidrográfica de España, han dado excelentes resultados,

Figura número 2.—Tuercas de seguridad.

Entre las muchas tuercas de nueva invencion que hoi existen para evitar que salten los roblones de los aparatos sujetos a trepidaciones considerables, como por ejemplo los automóviles, es curiosa la fabricada por la «Columbia Lock and C.a.», que consta de dos piezas, la verdadera tuerca, hendida en uno de sus chaflanes, i una contra tuerca esterior que la oprime fuertementecontra el tornillo. La superficie esterior de la tuerca i la interior de la contra-tuerca son algo piramidales, con objeto de que aumente su presión mútua al efectuarse cualesquier esfuerzos para destornillar el roblon.

La figura que publicamos nos dispensa de mayores esplica-

Figura 3.—Nuevo sistema de armadura para dinamos i motores.

La figura basta por sí sola para esplicar el nuevo sistema de armadura privilijiado por la «General Electric C.º» de Shenectady.

En este sistema el conductor forma una especie de escalera formada por láminas paralelas de cobre, unidas entre sí por dos cintas estremas del mismo metal, o por una cinta central i unos rebordes laterales.

La manera de arrollar el conductor sobre el núcleo de hierro se comprende por el solo exámen del grabado.

Figura 4.-Llave inglesa Sprague.

Esta llave tiene la boca móvil, independientemente del mango, dándosele el movimiento por medio de un tornillo lateral. Graciasa esta disposicion, puede servir el mango para actuar por medio de un escape de cliquete, sobre una rueda dentada en la cual están fijas las mandibulas de la llave inglesa.

Esta disposicion es sumamente útil en el caso en que hai que dar muchas vueltas al tornillo o a la pieza que se sujeta con la llave inglesa, bastando para ello un movimiento de vaiven del mango, como en las gatas ordinarias.

Figura 5.—Regulador de aguas para las calderas de vapor.

Este regulador acaba de ser patentado por Mr. B. Walker, de Austio (Texas).

Consiste en una cámara cilindro-esférica, que comunica por los tubos B i F, con la caldera, teniendo a un lado el indicador de nivel C, i en el interior un flotador A, que gobierna el mecanismo.

De la parte superior de la caldera, sale el tubo de vapor H, que se dirije, por la válvula E i el conductor G, a la bomba de alimentacion.

El flotador, por medio de una ballesta de tubos D, mueve la válvula E, de manera que, cuando el nivel del líquido en la caldera baja de cierto límite, se abre dicha válvula, dejando pasar el vapor a la bomba, la cual se pone en movimiento para inyectar nueva provision de agua en la caldera.

Para evitar los efectos de la presion sobre el flotador, termina éste en un tubo encorvado i abierto, estando por consiguiente sometido a presiones iguales por dentro i por fuera. Como así es posible que por efecto de la condensacion quede alguna cantidad de agua en la esfera, los tubos de la ballesta pueden servirle de desague hasta la válvula, para lo cual comunican unos con otros, en las articulaciones, como indica la figura articulaciones.

Figura 6.-Nueva máquina para limpiar las calles.

En Nueva York ha sido bien recibida por el público una nueva máquina de barrer calles, que presenta, como ventaja principal sobre sus conjéneres, la de evitar en absoluto el levantamiento de polvo. De aquí que se la llame máquina sanitaria, con cuyo nombre o sin él merecería ser introducida en nuestros servicios de policía urbana, tan caros de jornales, i tan propios para convertir a los transeuntes en caldo de cultivo de los microbios patójenos que infestan el polvo de las ciudades.

La maquina consiste en un carro separado en dos depósitos por un tabique horizontal; en el inferior Q hai agua que va regando la calle al salir por el tubo perforado T; el superior N es el depósito de basura.

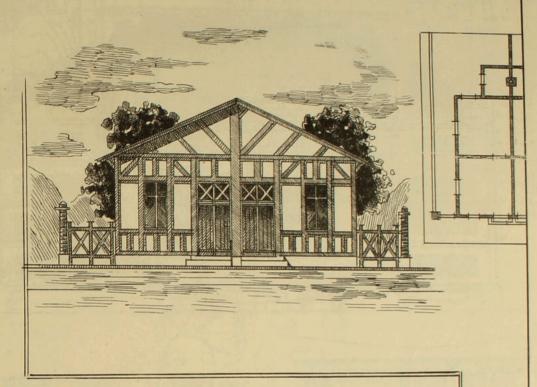
Las ruedas posteriores del carro engranan, por una trasmision de cadenas sin fin, con una escoba cilíndrica V, que echa las inmundicias en una tela sin fin R, guarnecida de travesaños S i movida por análogas transmisiones. Al llegar el peligroso producto a la parte alta, cae en el depósito N, en el cual lo esparce otra tela M, semejante a la primera, colocada junto a la tapa del carro. Una cubierta de lona S impide que el viento se lleve la basura que sube por el plano inclinado.

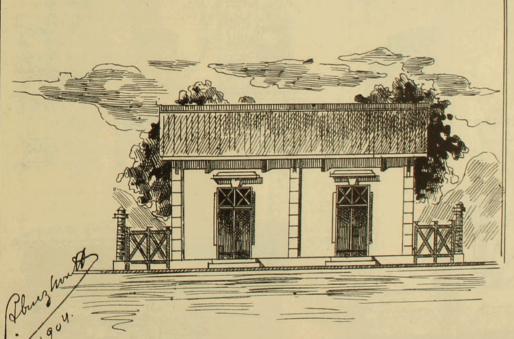
Cuando hai que vaciar el carro, se abre una compuerta lateral i desde el pescante, con un manubrio, se mueve la tela sin fin M que sirve de fondo al depósito, con la cual en pocos segundos se vacia completamente el contenido.

Figura 7.—El Elasticimetro de Fremont.

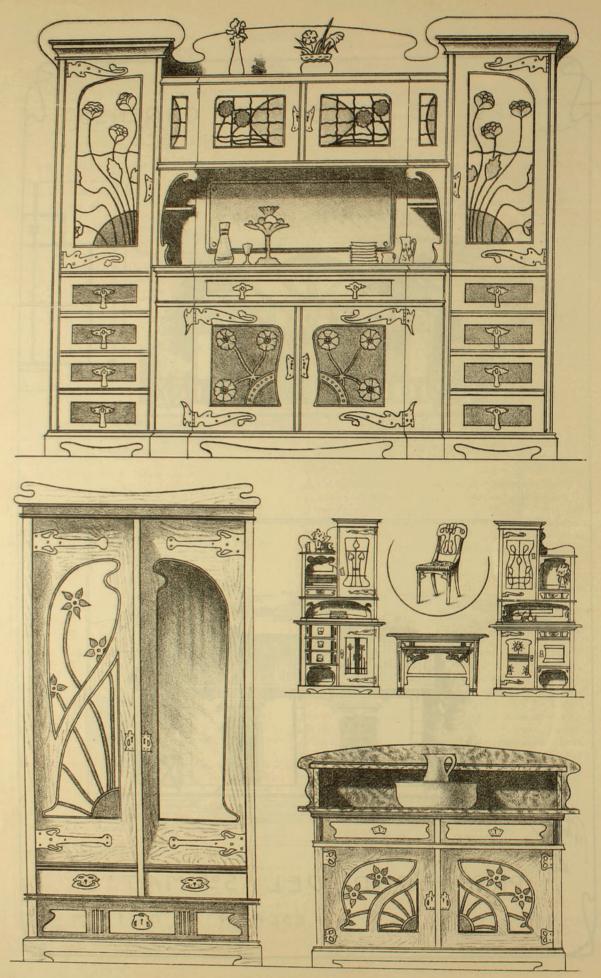
Este aparato, que representa nuestra figura, ha sido ideado por Fremont para estudiar por medio de diagramas, el trabajo cuantitativo necesario para perforar i cortar los metales, haciéndoles rejistrar en ordenadas los esfuerzos de la máquina i en obscisas los caminos recorridos por la misma. Consiste en dos ramas D i F en contacto con el armazon de la máquina X, articuladas en P i separadas por el resorte G. De estas dos ramas principales, la F F es fija, i la D D, móvil, lleva una varilla E con una puntaque marca, en ordenadas, sobreel cuadro C, los esfuerzos de deformacion trasmitido a D por la varilla L. El cuadro C del rejistrador es arrastrado por la cuerda que se ve en el dibujo, que pasa por las poleas B, H, I, puesta en tension por el peso A i que sigue, en abscisa, los movimientos del porta-herramienta M.

Los diagramas de nuestras figuras representan el trabajo absorvido por perforacion o corte.


El elasticimetro permite hallar la relacion que existe entre la seccion del perforador, el espesor de la placa i el trabajo total efectuado. Ademas, con él puede determinarse la relacion que existe entre dichas variables i el esfuerzo máximo gastado.


El elasticimetro sirve tambien para determinar los alargamientos que corresponden al período elástico de un metal. Para ello, consta el aparato, conforme indica nuestra figura primera, de dos estribos M i F, montados sobre la barra cuyo alargamiento se va a determinar, a la cual van fijos por los tornillos t, t'. Ademas, la varilla D va fija al estribo M, mediante pernos i se apoya sobre F, fijando en E por el punto conveniente. Sobre E i F se apoya el palmer P, que sirve para la medicion. Cuando se alarga la barra A B en el sentido que marcan las flechas, se alarga tambien D i, por la cual, se desvia E, siendo preciso tocar el tornillo micrométrico del palmer para leer con menor error de una centésima de milímitros el alargamiento alcanzado por la traccion.

El distinguido injeniero de Roubaix, N. Molinier, consigna en «L'Industrie Textile», los siguientes datos obtenidos con este aparato.


			Ca	rga	8	Alarga	ımı	entos
	Hierro ordinario					0,07		
+	Hierro de buena clase							
ł	Alambre de hierro	20	a	30	2	0,10	a	1,15

TIPO DE (ASAS PARA OBREROS

PROPIEDAD DEL SOR MATTE
ESCALA DE DO1.P.M.

Muebles estilo moderno

ABEPER GRIKIN NOPORSS UVWXXZ

Figura 8.—Salvavidas sistema tiestos para tranvias eléctricos.

Este aparato es sencillísimo i relativamente de poco costo, resultando a la tercera parte de precio de los ensayados hasta la fecha, pudiéndose construir en el mas modesto taller.

En la parte delantera del coche van dos palancas de hierro A, con topes en sus estremos B, los cuales presentan alguna inclinacion hácia la parte esterior del coche, i apoyan en un muelle posterior para disminuir la violencia del golpe, en caso de chocar con alguna persona. De tope a tope va una lona fuerte C, sostenida por sus bordes por dos cuerdas horizontales tensas entre ámbos topes. La lona queda a 25 cm. del suelo, por lo cual si choca con alguna persona que esté de pié en la vía, le hace dar vuelta hácia la malla D, que termina en la parte vertical E. Detrás de dicha malla E, hai un zig-zag de cuerda gruesa separada 15 cm. de la caja del coche, a fin de evitar que la persona alcanzada por el coche dé contra la plataforma del mismo. Para las personas que pudieren quedar tendidas en la vía, hai debajo de la red un aparato F, compuesto de cadenas que pasan a 40 milímetros del suelo i que en el momento de chocar con cualquier objeto, efectuan un movimiento de descenso, rastreando entónces por el suelo i recojiendo el obstáculo. Detrás de dichos aparatos F, va un cepillo G que se estiende entre ámbos rieles, asegurando la accion de las cadenas, las cuales están unidas de trecho en trecho entre sí por 8 o 10 eslabones.

Las palancas de los topes pueden plegarse por la mitad de su lonjitud, con objeto de ocupar ménos espacio cuando se guardan los vagones en las cocheras.

Figura 9.—Aparato «perfectus» para el cierro automático de las puertas.

La casa Burin, de Paris (108, rue Richelieu) fabrica, desde hace poco, unos cierres automáticos en que el aire comprimido ejerce de motor. En el marco de la puerta se atornilla una pieza C provista de un eje F, alrededor del cual puede jirar el tubo T. En la puerta misma se atornilla una pieza parecida B, con el eje H, alrededor del cual jira la espiga A del piston P, el cual enchufa exactamente en el tubo F. En este último se inyecta aire a presion por la válvula E, para lo cual basta atornillar en D un bombin de los que usan los ciclistas para hinchar los neumáticos.

Cada vez que se abre la puerta, se hunde el piston P en el tubo T, i la presion del aire es suficiente para volver a cerrar la puerta.

Cuando se quiere desarmar el cierre, no hai necesidad de destornillarlo, bastando abrir la válvula E.

Habitaciones para obreros

El señor Alberto de la Cruz Montt ha tenido la bondad de proporcionarnos el plano i dos fachadas de las casitas para obreros, que están en ejecucion en la poblacion de los señores Matte, pintoresca e hijiénica poblacion destinada a dar habitaciones cómodas i baratas a nuestros obreros.

La citada poblacion se levanta en el barrio de la Palma, al terminar la línea de los carros que llevan este nombre.

Queriendo dar a nuestres lectores algunos datos sobre la construccion de estas casitas, nos acercamos al jóven i distinguido arquitecto señor Montt, quien ha llevado a cabo aquellas obras, i obtuvimos de él los siguientes: Son de material de ladrillos, cierro del mismo, puertas i ventanas de raulí de primera clase; cielos, cornizas, entablados, etc., de la misma madera aceitada. El techo i las canales de fierro galvanizado de superior calidad, son estucadas i blanqueadas interiormente, haciéndolas de este modo mas hijiénicas que las empapeladas. En fin, son dos pie-

zas grandes comunicadas, i una cocina. Algunas tambien tienen un galponcito i todas tienen rejas a la calle que sirven para el servicio.

El valor total de lo gastado en la construccion de cada una de ellas, incluso el honorario por la direccion de los trabajes, asciende a \$ 1 450 mas o ménos, i el arriendo que por cada una de ellas cobran los señores Matte varia entre 16 i 18 pesos mensuales.

Esta nueva poblacion viene, pues, a proporcionar a nuestros hombres de trabajo, habitaciones cómodas, hijiénicas i baratas; i no dudamos que la benéfica idea de los señores Matte ha de ser mui luego imitada por otros hombres de fortuna.

Esposicion de El Arte Industrial

Entrando en nuestros propósitos fomentar en el país las aplicaciones del arte a las industrias a fin de despertar las dor midas enerjías del obrero chileno i de aguijonear sus naturales disposiciones intelijentes, que lo hacen apto para competir ventajosamente con el artesano estranjero i las industrias exóticas, EL ARTE INDUSTRIAL organizará para el próximo mes de Marzo una esposicion en que puedan exhibirse las producciones nacionales que comienzan a desarrollarse en las industrias artísticas.

La base de esta esposicion será la coleccion de modelos de nuestra revista i, con el concurso de obreros e industriales, tenemos la certeza de poder reunir un pequeño pero atrayente grupo de arte moderno que podrá ser admirado por todos los que se interesan por el adelanto i progreso nacionales.

Desde luego la seccion de cerámica, arte que se desarrolla admirablemente en el sur—gracias al desvelo de algunos industriales alemanes,—podrá ser una revelacion i dar márjen a su fomento, ya que en el pais hai materiales aprovechables para su esplotacion i aprovechamiento.

La carpintería i mueblería, arte nuevo, podrán exhibirse como manifestacion de la facilidad con que pueden ser fabricadas por el artesano chileno, siempre que éste tenga modelos que lo ilustren i le sujieran nuevas combinaciones de líneas i armonías de colores que rivalicen con los del Viejo-Mundo. Hai en nuestras selvas feraces, casi vírjenes, flores tan bellas como el fresco copihue, cuyos pétalos graciosos pueden dar tema a encantadoras aplicaciones del dibujo, temas no esplotados i que están en manos de nuestro obrero.

Igual cosa ocurre con el tallado artístico, el torneado i calado de la madera; con la pintura decorativa, las instrucciones modernas, la fabricacion de mosaicos, ladrillos, vitreaux; con la confeccion de flores artificiales, de arte-factos de vidrio; con la ferretería i hojalatería artísticas, etc., etc.

La exhibicion de El Arte Industrial podrá servir, pues, para que nuestros obreros se den a conocer mas bien i para que el público comience a apreciarlo debidamente.

Desde luego nuestros favorecedores que deseen concurrir con sus trabajos o producciones a esta Esposicion pueden pedir se les inscriba indicando la forma como desean presentarse.

Herrería i Cerrajería.

(Esplicacion de las figuras que encierra esta lámina)

Figura 1

Esta figura representa a uno de los tantos modelos de verjas que se conocen; pero esta construccion de verja es costosa i solo se emplea en los palacios i otras construcciones de lujo o

Dichas verjas suelen llevar en algunas partes puertas para el paso de carruajes i personas, i se enlazan con ellas ya por medio de pilares de sillería, que sirven de apoyo, ya con columna de fundicion fuertemente empotrada en el suelo o zócalo.

La base de estas construcciones metálicas es siempre una fuerte platina que lleva a trechos unos hierros salientes, los cuales se introducen en unos agujeros que lleva el zócalo, en los que se asegura el conjunto por medio del plomo.

La figura 6 representa una puerta de hierro aplicable a esta clase de verjas o a huecos en los muros de cercas de jardines.

Figura 2, 3 i 7

Representan cercos. Suele ocurrir tener que transformar una abertura rectangular en arco, i en este caso se emplea una combinación de hierro que se adapta en la fábrica por medio de patillas. Las figuras de que nos ocupamos dan una idea de estas sencillas disposiciones.

Figura 4, 5 i 8

Modelos de rejas i balcones, que pueden aprovechar como modelos delicados i elegantes nuestros artesanos para la composición de sus dibujos en esta clase de obras.

Recetas Industriales

Grasa para el calzado de resistencia

A todos cuantos han de hacer largas marchas a pié, interesarán las siguientes indicaciones para la preparacion del calzado. El uso de la grasa recomendada, es de suma eficacia contra las molestias que ocasiona a los piés el cuero endurecido-

Tocino (Saindoux)	4	partes
Aceite	4	,
Caucho	2	3

Se hacen fundir juntas a fuego lento.

Despues de haber humedecido la suela del calzado con agua, se hace calentar la botina al fuego i se le da una mano de dicha composicion; el calzado adquiere luego suma flexibilidad i se vuelve brillante e impermeable, siendo además su duración mucho mayor.

Soldadura de los metales con el vidrio i la porcelana

Para obtener tan interesante resultado, se metaliza el vidrio o la porcelana i puede en seguida tratárseles como un metal; por consiguiente, soldarlos por medio del estaño con los otros metales que se sueldan por este procedimiento.

La metalización del vidrio se efectúa depositando primero una capa de platino, despues sobre la capa delgada obtenida, otra capa de cobre electrolítico. El depósito de platino se obtiene poniendo con un pincel, en la parte que se ha de soldar, un poco caliente, una mezcla de cloruro de platino i de esencia de manzanilla. Se hace evaporar lentamente i cuando no se produce vapor alguno, se lleva al rojo oscuro; el cloruro de platino se reduce i el metal formado queda adherente al vidrio.

El tubo así platinado se sumerje en una solucion de sulfato de cobre poco concentrada i se pone en comunicacion con el polo negativo de una pila de débil corriente (por ejemplo Daniel). El cobre depositado es maleable i se adhiere fuertemente al vidrio.

Perforacion del vidrio

En el sitio donde se desee efectuar el agujero, se aplica un pedazo de arcilla o de masilla de vidrieros, bordeando el círculo que se quiere perforar. Una vez seco, llénese con una pequeña cantidad de plomo fundido. Cuando éste se ha solidificado, basta un lijero golpe seco para que se desprenda un pedazo de vidrio del diámetro del plomo.

Metal antifriccion

Se obtiene un excelente metal antifriccion fundiendo i mezclando juntos:

Estaño	8	partes	en	peso
Antimonio	2	3	2	196
Cobre	1	*	,	*

Si se encuentra este metal duro, puede ablandarse añadiendo una pequeña cantidad de plomo.

Se recomienda especialmente para las máquinas de movimiento rápido. Un árbol puede jirar en un confinete guarnecido de este metal, a la velocidad de 200 vueltas por minuto sin que se produzca calentamiento alguno en las piezas.

Trasparencia momentánea de un papel para dibujar

Moje Ud. una hoja de papel con un poco de bencina o gasolina i obtendrá un papel trasparente que le facilitará la copia de cualquier dibujo. Pero la transparencia se va, pues el líquido se volatiliza, i el papel vuelve a su estado opaco.

Este trabajo debe hacerse de dia i léjos de cualquier llama, pues estas sustancias dan con el aire vapores esplosivos.

Puede tambien emplearse esencia de trementina, recientemente purificada por destilacion.

Masilla para cicatrizar el corte de los árboles.

Fórmula:

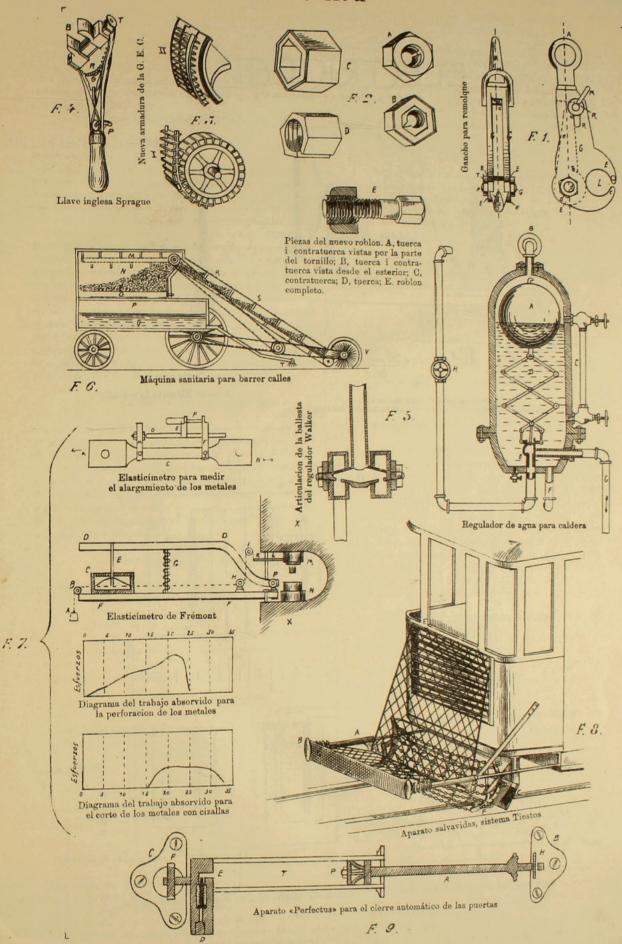
Pez blanca	250	g
Pez negra	250	,
Alcohol naftalinado	90	20
Esencia de trementina	60	>
Creta blanca	120	*

Se hace derretir la pez blanca a un fuego suave, se le agrega la pez negra i se sigue calentando hasta obtener un líquido homojéneo. Entónces se retira del fuego, se deja enfriar algo, despues se vierte en la piel líquida la mezcla de alcohol naftalinado i de esencia de trementina, ajitando la masa sin interrupcion. Luego se agrega poco a poco la creta puramente pulverizada i se hace una pasta homojénea, la que se encerrará inmediatamente en cajas de hojalata que se conservarán bien tapadas.

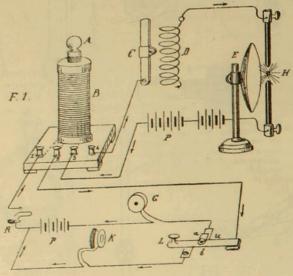
Tinta para escribir sobre vidrio

Disuélvanse en frio 20 gramos de laca morena en 16 centilitros de alcohol de quemar, i, por otra parte, 35 gramos de borax en 25 centílitros de agua destilada. Mézclense las dos disoluciones siempre en frio. Se da color con un gramo de violeta de metileno.

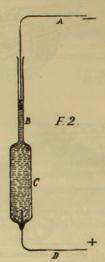
Método por frotamiento para el niquelado de los metales

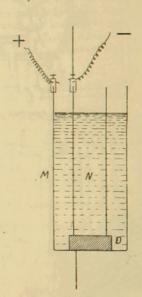

Para niquelar objetos metálicos, límpiense bien i humedézcaseles en una disolución que contenga:

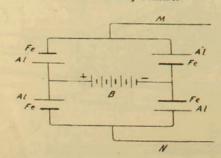
Agua	100	partes
Sulfato Cúprico	200	
Ácido sulfúrico	50	*

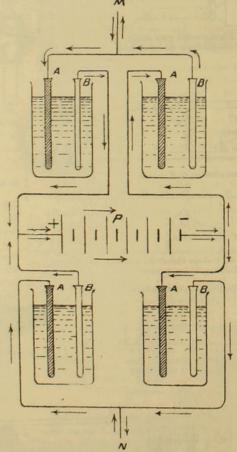

Así se consigue dar a los objetos un lijero barniz de cobre, sobre el cual se puede fijar la capa de niquel i para ello con un lienzo se estiende se estiende sobre el objeto una disolucion que contenga:

Ácido clorhídrico	1 000	partes
Niquel	60	,
Estaño	30	
Hierro	10	- 2


Mecánica


ELE(TRI(IDAD


Disposición del arco parlante empleado simultáneamente como transmisor y receptor


Avisador Eléctrico de incendio

Válvula elèctrica de Pollak y Graetzel

Esquema del conversor electrolítico

Conversor electrolítico de corrientes alternativas

Despues de esto o inmediatamente se toma con el trapo mojado un poco de polvo de zinc i se frota fuertemente hasta que se forme una capa uniforme de niquel, cuyo espesor será tanto mayor cuanto mayor número de veces se repita la operación completa. Para obtener una capa de regular espesor basta con 2 veces.

Yeso imitando al marmol.

Hé aquí un procedimiento para dar al yeso un aspecto que lo asemeje al mármol.

Se sumerje el objeto de yeso, si está completamente seco i limpio en una solucion compuesta de 650 gramos de alumbre i 3 litros de agua o bien otra cantidad cualquiera, miéntras se guarden las referidas proporciones. Hácese la solucion en caliente hasta que el alumbre esté enteramente fundido. Ha de sumerjirse el yeso miéntras el líquido dure caliente. Despues de media hora se saca el objeto i se pone en dos escurrideras de madera, colocadas sobre el recipiente a fin de que aquél se vaya secando. Se deja enfriar i entónces se rocia, lo mas regularmente posible, con el líquido, facilitando este nuevo modo de impregnar el objeto por medio de una guata. Se termina esta operacion al observar que el alumbre ha depositado sus cristales en toda la superficie del objeto, que se coloca entónces en un paraje bien seco, donde se deja hasta que la humedad haya desaparecido completamente. Despues de varios dias, deberá frotarse con papel de vidrio mui fino o con papel de esmeril i terminar frotándolo con una tela lijeramente húmeda.

Manera de limpiar los objetos de yeso.

Para quitar el polvo i otros cuerpos que se dopositan sobre el yeso i que penetrarian en él, ha de embadurnarse la superficie con un pincel no mui suave cargado de pasta de almidon.

Se toma almidon mui blanco i finamente pulverizado i, con agua tibia, se hace un caldo o pasta espesa, que se aplica cuando está todavía caliente. Se deja entónces secar lentamente; el almidon se agrieta i se reduce a escamas, i haciéndolas caer con la uña, todos los fragmentos que se desprenden llevan consigo las partes sucias del yeso.

Incienso aromático.

Sándalo pulverizado	ı Kg
Corteza de cascarilla pulverizada	
Benjuí	500 >
Salitre	100 >
Vetiver	100 >
Granos de almizcle	I »

Se tamiza i se aprensa.

Contra la caida del cabello.

Lávese cuidadosamente el cuero cabelludo con jabon adicionado con un poco de grasa como lanolina, se enjuga, con un paño seco i luego se impregna la piel húmeda aun, con la siguiente mezcla:

Tanino	5	g	
Agua de colonia	2	3	
Espíritu de mostaza	10	3	
	90	3	ı

Método para limpiar el dorado sobre madera

Para limpiar los objetos de madera dorados con oro fino, se toman 30 gramos de potasa i se disuelven en medio litro de agua; con un cepillo de pelo de tejon mui suave, se lava lijeramente el dorado, quitando con una esponja la lejía superabundante, i pasando el cepillo con mucha suavidad. Luego se empapa una esponja en agua de fuente i se pasa en seguida

sobre el dorado con el objeto de quitar la lejia, pues no conviene dejarla mucho tiempo porque perjudicaria al dorado; hecho esto se baña con un poco de agua clara i se deja escurrir. Una vez escurrida toda el agua se enjuga con unos lienzos calientes, arrimando el dorado al fuego o al calor de una estufa para que recobre su natural viveza. Si los huecos se han alterado, se pasa por ellos una mano de color rojo i queda concluida la operacion.

Saquito oloroso para el bolsillo.

Lirio de Florencia	600	partes
Palo de rosa	200	
Cálamo aromático	200	3
Hojas de rosa	120	,
Clavo de especia	15	

Azúcar una parte.

Se mezcla todo despues de reducido a polvo mas o ménos fino, segun se desee; se echa este polvo en saquitos de tafetan i conservará mucho tiempo su perfume.

Cola liquida

Jelatina	40	gramos
Agua	300	C. 3
Acido salicílico	3	gramos
Agua de sosa	20	

Se disuelve la jelatina en el agua a fuego suave; despues se deja enfriar i se añader las demas sustancias.

El sub cloruro de cobre en la pintura

El señor Maxwell Lile preconiza el empleo del sub-cloruro de cobre en la pintura de los depósitos de agua. Las sales de cobre i las sales de mercurio son venenos activos para las plantas i los infusorios; i las últimas son aun demasiado peligrosas para ser empleadas. Por lo contrario, las sales de cobre insolubles, como el sub-cloruro, destruyen las vejetaciones i los microbios que pueden producirse en las aguas domésticas i las contajian mucho ménos que las pinturas de base de plomo habitualmente empleadas. Ademas, las sales de cobre se aislan fácilmente del hierro que constituye el depósito: este último recibe primero una capa de pintura de base de zinc o de mag nesia, en la cual se deposita la de sub-cloruro.

Pasta para pulido de los metales

Fundanse en baño maría:

Estearina	10	gramos
Sebo	20	3
Parafina	5	3

i añádase cuando están en fusion estas grasas:

1 anadase cuando estan en rustou estas 8.		
Colofonia en polvo fino	2	gramos
Cal en polvo fino		
mezclando todo intimamente.		

Guardese en paraje seco.

Bronceado de las armas

El procedimiento frances empleado por la casa Schneider i Compañía, consiste en las operaciones siguientes:

Se desengrasan las armas con cal o sosa i se aplica con una esponja o por inmersion una mezcla de

Cloruro de bismuto	1	parte	еп	pes
Bicloruro de mercurio	2	2	39	13
Cloruro de cobre	I	2	3	3
Acido clorhidrico	6	3	2	3
Alcohol	5	2	3	3
Agna	50	3	3	3

Dejándola secar sobre el metal i colocando despues el objeto en agua hirviendo durante media hora, hasta que aparezca la coloración deseada. Despues se fija con aceite i se seca al fuego.

Para las grandes piezas de artillería, da buenos resultados i una coloración parda de gran brillo la mezcla siguiente:

Se dan tres capas con intervalo de algunas horas; despues se añade arsénico a la mezcla i se da una cuarta capa, frotando vivamente i dejando secar todo un dia.

Se pule el bronceado obtenido, con una mezcla espesa de aceite cocido, cera i trementina, frotando con un trapo de algodon i despues con la mano.

Tinta para marcar sacos.

Nada hai tan fácil como la preparacion de una tinta para marcar sacos, envases mui útiles i de los cuales con suma frecuencia tiene que valerse el industrial.

Para ello, basta disolver negro de humo en cualquier esencia i seguidamente añádase aceite de linaza, obteniendose de este modo una composicion algo espesa. Es una tinta indeleble.

Barnizado de dibujos industriales.

Se cubre el dibujo de una capa de colodion con 2 por ciento de estearina. Se estiende el dibujo sobre placa de vidrio o sobre una plancha, i se aplica el colodion de la misma manera que en la preparacion de las placas. Despues de 10 o 20 minutos el dibujo está seco i enteramente blanco, de aspecto mate.

La protección es tal, que puede lavarse con mucha agua sin temor de deteriorarlo.

Cuando se trate de hojas destinadas a ser manejadas i no de dibujos fijos en un sitio, será preferible emplear la parafina en vez de estearina en la mezcla, a objeto de que sea mas blanda i se eviten las grietas.

Papel que resiste el fuego.

Se hace una pasta con 25 o 30 partes de sulfato de alúmina; se agrega una solucion de cloruro de zinc, i despues se lava con agua. La materia se trata enseguida por un líquido acuoso que tenga una parte de jabon de resina por 8 o 10 partes de sulfato de aluminio puro. Con esta parte se hace el papel por los procedimientos ordinarios.

Fabricacion de aluminio puro.

Segun La Electrical Review, de Londres, el señor Hall ha tomado patente para la estraccion del aluminio puro de la bauxita. Mézclese el mineral con una pequeña cantidad de carbon i se calcina, despues se añade una nueva cantidad de carbon de manera que la proporcion total alcance al 8 o 10 por 100. Si el mineral es pobre en hierro, se añade un poco de óxido férrico i, en ciertos casos, espato de fluor, cal, criolita o sosa. Con estos ingredientes o sin ellos, incorpórese la mezcia de bauxita calcinada i de carbon a cierta proporcion de polvo de aluminio, regulándose la proporcion de metal segun el tanto por ciento de óxido férrico, de ácido silícico i de ácido titánico, que existen en la bauxita primitiva. Fúndese el conjunto a elevada temperatura o se pone en un horno eléctrico.

El aluminio que se ha añadido se combina con el hierro, la sílice i el titano del mineral para formar una aleacion que cae al fondo del baño i se separa ulteriormente. La materia que queda en el crisol es aluminio puro exento de sodio; se deja enfriar, se reduce a polvo i se eliminan las partículas metálicas por el tratamiento magnético. Finalmente se convierte la masa en aluminio metálico por el método electrolítico habitual.

FOLLETIN

ARTE DE PINTAR

DIVIDIDO EN TRES PARTES, A SABER

PRIMERA PARTE

PINTURA AL ÓLEO, AL BARNIZ, AL FRESCO, EN MINIATURA

SEGUNDA PARTE

PINTURA AL OLEO, AL CRISTAL, AL TRASPARENTE

SOBRE MADERA, COBRE I TELA

A la oriental. Dorar i platear el cristal. Reboques de casas, i pintura de las habitaciones

TERCERA PARTE

ARTE DE PINTAR AL LAVADO I A LA AGUADA EL PAISAJE

PRIMERA PARTE

De la pintura en jeneral

Las clases mas usuales i conocidas de la pintura se dividen de la manera siguiente: al oleo, al barniz, al fresco, al temple, al esmalte, al pastel, en miniatura, en cristal i a la oriental.

Con el descubrimiento de la fotografía se ha dado un gran paso a la imitacion de la naturaleza, pues solo con una máquina se copia exactamente todo, i nos encontramos, sin jamas haber tirado una línea, unos exactos dibujantes i unos perfectos retratistas, cuyos dibujos los hacemos en pocos minutos, i tan exactos, que el mas célebre pintor no nos negará; la esplicacion de este método se halla en un tratado que luego se reproducirá en las columnas de EL ARTE INDUSTRIAL; de consiguiente, pasaremos a lo que con este librito se nos va a enseñar, esto es, a lo primero: preparacion de los colores.

COLORES AL ÓLEO

Estos colores se molerán perfectamente en la piedra con aceite de linaza cocido con ajos (para que sea mas secante.) para pintar muebles, armarios, etc.; para pinturas se molerán del mismo modo con aceite de nueces; estos colores pueden echarse a perder, i solo se conservan echándolos en cacharros grandes i dejándolos tan espesos que se pueda echar agua clara por encima, mudándosela a menudo; pero lo mejor será no hacer mas que lo preciso.

Cuando se pinten maderas, se taparán todos los agujeros i se les dará una mano de pintura ordinaria al temple, que ajuste todos los nudos i aberturas; despues de seco i raspado lo que sobresalga para que todo quede igual, se le dará una mano de cola, i despues de seca se darán al óleo las que sean necesarias.

COLORES PARA EL BARNIZ ORDINARIO

Estos colores se componen de aguarras i pez guinga, i sirven para pintar muebles i todo lo que esté a la intemperie. Se molerán en la piedra con un poco de aguarras, i despues se liquidaran por medio del barniz ordinario; en seguida se dará a lo que sea dos o tres manos, advirtiendo que la primera mano ha de ser ménos espesa, i no se dará una mano sin que se haya secado la otra,

Ajencia de Construcciones i Reparaciones

FÁBRICA A VAPOR

Sto. DOMINGO, 1716

ENRIQUE ECHEVERRIA CAZZOTE Casilla 1135

LA AJENCIA SE ENCARGA DE:

Construcciones i reparaciones de edificios i departamentos interiores.

Recibe órdenes para ejecutar en las casas trabajos de cualquier naturaleza, garantizando la buena ejecucion de estos.

LA FÁBRICA SE ENCARGA DE:

Trabajos de carpintentería en jeneral.

Instalacion i traslacion de Oficinas i Casas Comerciales.

Hace muebles corrientes i de fantasía.

Compone, transforma, barniza, pinta i tapiza toda clase de muebles. Recomienda sus entablados-encerados, IMITACION PARQUETS, que por su bajo precio, duracion e hijiene, reemplazan con ventaja al mejor alfombrado.

VALLE i Ca.

MECÁNICOS HERREROS

Calle Chacabuco, Núm. 258 - VALPARAISO - Teléfono ingles Núm. 1333 Especialistas en motores a gas, parafina i vapor HACEMOS TODO TRABAJO DE HERRERIA I CERRAJERIA

COLOCAMOS CAÑERIAS DE GAS I AGUA

RECIBIMOS TODO TRABAJO FINO

de ajuste para tornear HACEMOS ESTANQUES, FONDOS DE FIERRO

i Todo Trabajo Concerniente al Ramo a Precios Equitativos

Nos encargamos de Instalaciones de toda clase de Maquinarias i Calerias a Vapor

PAPELERIA INCLESA

Condell, 16-VALPARAISO-Casilla, 717 BUONO-CORE I DUPRE

Pinturas, Merceria, Papeles pintados

i Grabados sobre Vidrios

Se encargan de Pinturas de Casas, Letreros, Trasparentes i Decoraciones de todas clases.

Marcos para cuadros.

Pinturas Artísticas para cielos.—Figuras Alegóricas. Retratos, Paisajes, Decoraciones para Iglesias, Salones

Fábrica de Trasparentes, Sommiers i Colchones.

INSTALACIONES COMPLETAS DE CASAS

DROGUERIA ESPAÑOLA

Valparaíso - 540 Victoria 540

F. BELLICIA

Establecimiento de primera clase

Importación Constante de Europa i Estados Unidos

GRAN TALLER DE CARPINTERIA

De los Sres. CALLEJAS I Cia.

VALPARAISO—SALVADOR DONOSO Número 59 D.

Se encargan de todas clases de Construcciones i Edificios.

Son Especialistas en toda clase de muebles, puertas i ventanas etc.

RESTAURANT DEL GLOBO

Cochrane, 180 - Blanco, 105

VALPARAISO

JULIA T. DE ARANCIBIA

Imprenta i Encuadernacion

UNIVERSITARIA

Oficina: Bandera, 41 - Talleres: Gay, 1765

SE EJECUTA

Toda clase de trabajos tipográficos

FUNDICION I TALLER

ELÉCTRICO MECÁNICO

DI

LUIS JASPARD

Obras de Precision - Turbinas - Motores

Planchas Metálicas para el Comercio,

Casilla N.º 316

Prensas de Pasto,

Luz, Trasportes de Fuerza,

Máquinas agrícolas, Bombas, Máquinas para llenar i destapar botellas etc.

Instalaciones Completas de Luz Eléctrica

Dinamos Acumuladores - Composturas en jeneral - Trabajo garantizados.

Teléfono, 1906

SANTIAGO

San Pablo, 1239

entre Morandé i Teatinos

Seccion de Traducciones

Entre los miembros colaboradores de la revista EL ARTE INDUSTRIAL, se acordó abrir esta Seccion, en que se harán con exactitud i esmero toda clase de traducciones en los idiomas ingles, aleman, frances, italiano, etc. Los honorarios serán módicos Dirijase la correspondendencia al Editor de EL ARTE INDUSTRIAL.

Seccion planos, presupuestos de edificacion, instalaciones de fábrica, etc., etc.

Es otro de los acuerdos de los señores colaboradores. Han acordado, pues, abrir tambien esta Seccion, que vendrá a prestar, no lo dudamos, grandes i útiles servicios a los propietarios e industriales.

Las personas que soliciten estos servicios serán inmediatamente atendidos por los señores injenieros i arquitectos con que cuenta nuestra Revista, por precios sumamente módicos.

La Revista de los Niños

Periódico Ilustrado de Actualidades

i Lecturas Infantiles

Número Suelto, diez centavos

Suscricion: (14 números) \$ 1

Direccion:

Administrador de la Revista de los Niños, Casilla 177 - Santiago

EL ARTE INDUSTRIAL

REVISTA MENSUAL ILUSTRADA

sobre las aplicaciones prácticas del dibujo en las industrias en jeneral, talleres, escuelas i hogares Suscriciones: por un año \$ 5 — por seis meses \$ 3 — número suelto \$ 0,50

COLABORADORES

Alberto de la Cruz Montt, Arquitecto.

Pedro E. Wielandt, Injeniero del plano de Santiago.

Federico Thum, ARQUITECTO, INJENIERO I PROFESOR EN EL INSTITUTO NACIONAL.

Manuel Tulaud, Secretario de la Dirección de OBRAS MUNICIPALES.

A. del Valle, Profesor de Dibujo de Máquinas en LA ESCUELA DE ARTES I OFICIOS.

Aquilino García, Profesor de Dibujo Ornamental EN LA ESCUELA DE ARTES I OFICIOS I DIBUJANTE DE LA DIRECCION DE OBRAS PÚBLICAS.

Carlos Lacoste, Jefe de la Sección de Mecánica de LA ESCUELA DE ARTES I OFICIOS.

Isaias Aguila, ARQUITECTO.

Alfredo Gacitúa, Injeniero de la Dirección de OBRAS MUNICIPALES.

Lautaro Ponce, Doctor.

SRTA. Virjinia Alvarez, Profesora de Dibujo.

Luis Felipe Lazo, Injeniero de la Direccion de OBRAS MUNICIPALES.

Ramon Laval, Secretario de la Biblioteca Nacio-NAL I PROFESOR DE CALIGRAFIA DE VARIOS LICEOS I COLEJIOS.

Agustin Palma Riesco, Jefe del Salon de Lectura DE LA BIBLIOTECA NACIONAL.

Heraclio Fernandez, DIRECTOR DE «EL CHILENO».

Erasmo Arellano. Profesor, Secretario i Jerente DE «LA EDUCACION NACIONAL».

Aage G. Hald, JEFE DE LA SECCION DE ELECTRICIDAD DE LA ESCUELA DE ARTES I OFICIOS.

Antonio Santibáñez Rojas, Visitador de Escuelas DE VALPARAISO.

Armando Tapia Rojas, PRIMER DIBUJANTE I PROPIE-TARIO DE LA REVISTA «EL ARTE INDUSTRIAL»

Toda correspondencia, suscriciones, pedidos de numeros sueltos, etc., etc., dirijanse al administrador de

El Arte Industrial, Imprenta Universitaria. Casilla 1770

Fábrica Nacional a Vapor

SACOS DE PAPEL

Maturana i Cáceres 23 GARCIA REYES 25 - CASILLA No. 670

SANTIAGO

IMPORTACION DIRECTA DE EUROPA

PAPELES DE PRIMERA CALIDAD

SASTRERIA

Clodomiro Villarroel M.

INDEPENDENCIA 389

(frente a Pinto)

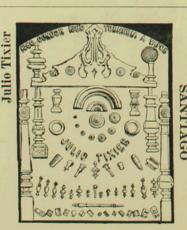
SANTIAGO

ESPECIALIDAD EN CASIMIRES FINOS

TRAJES DE CABALLEROS I NIÑOS

CORTE ELEGANTE I GARANTIDO PUNTUALIDAD EN LA ENTREGA

BODEGA DE VINOS


DE CAUQUÉNES

Estos vinos por la calidad del terreno que los produce son los mas ricos en tanino natural que existen en Chile, siendo por consiguiente los vinos mas estomacales i cordiales por excelencia.

Debido a ello es la fama que tienen los vinos de Cauquénes desde que en Chile existe la viña.

En la única parte que se espenden por MAYOR i MENOR es en la AVENIDA O'HIGGINS 1261. SANTIAGO

VAPOR Molduras, recortes 1 calados TORNERIA

ENTRE DUARTE I NATANIEL

1380, CONDOR, 1380

El Arte Industrial

MANUEL TULAUD

REVISTA MENSUAL ILUSTRADA

R. TAPIA ROJAS

Año 1

Santiago de Chile, Julio de 1908

N.º 3

Arte aplicado a la industria chilena.

(El Mercurio de Santiago de 6 de octubre de 1904)

Entre los aumentos, o mejor dicho, los ítem nuevos propuestos por el Gobierno en el presupuesto de Instruccion Pública, figura uno que merece la mas completa acojida del Congreso, porque consulta una verdadera necesidad pública i es la espresion de una idea práctica

Nos referimos al ítem destinado a crear i mantener una escuela de arte decorativo i de arte aplicado a la industria, para lo cual se han solicitado 18 000 pesos, y que la Comision Mista discutió en su sesion de ayer, sin alcanzar a tomar acuerdo sobre la materia.

Pocas veces se habia indicado al Congreso una idea que represente mas exactamente el rumbo práctico de la enseñanza, es decir, aquella forma de la enseñanza que real i verdaderamente se refiere al progreso material del país i que tiende a armar a los hombres para la lucha de

Pocas veces se habia agregado al presupuesto de Instruccion Pública un ítem que interesara mas directamente a los obreros, a los que trabajan, a los que tienen el derecho de pedir al Estado que su enseñanza sea enderezada a las necesidades i conveniencias de la actividad productora del país.

Una escuela de arte aplicado a la industria tiene por objeto dar al jóven los conocimientos necesarios para que su producto sea mas i mas perfecto, para que se adapte al gusto del público, para que pueda seguir las transformaciones del espíritu del consumidor, para que deje de ser la obra rutinaria i vulgar que fácilmente es vencida en la competencia por el trabajo estranjero, i llegue a ser una produccion técnicamente perfecta i susceptible de progreso indefinido.

Esa escuela enseñará al futuro mueblista, herrero, constructor, estucador, decorador, a todos los oficios, el arte del dibujo, que es base de toda industria que se perfecciona i se hace racional, les dará a conocer los estilos, refinará su gusto, pondrá un marco de leyes artísticas i de educacion del ojo i de la mano a las condiciones naturales excelentes de nuestros trabajadores, que pueden ser estimados entre los mas intelijentes del mundo.

Con una rápida asimilacion que pocos pueblos poseen i comprendiendo inmediatamente las ventajas de estos nuevos rumbos, nuestros jóvenes han acudido a centenares a la escuela de dibujo que la Sociedad de Fomento Fabril mantiene en Santiago, a pesar de que esa benefica i activa asociacion no ha podido estender su obra mas alla de los límites restrinjidos de una escuela de dibujo industrial, sin alcanzar el desarrollo que su solo nombre indica en la «Escuela de arte aplicado a la industria» que ahora propone el Gobierno.

El trabajo chileno permanece como estacionario, esperando siempre modelos buenos que imitar, sometido a la tutela de los maestros estranjeros, sin el vuelo propio que deberia tener, dadas las condiciones naturales de intelijencia i de fácil asimilacion que distinguen a nuestro pueblo. Todavía los jefes de los principales talleres son

estranjeros, no porque sean mas intelijentes, sino porque ellos han recibido educacion técnica, han visto modelos de todos los estilos, han conocido en mayor o menor escala las nociones del arte aplicado a la industria, que es el grande arte de nuestra época, necesario en todos los oficios i cada dia mas indispensable a medida que el progreso educa el gusto jeneral i crea nuevas exijencias.

Si a nuestros compatriotas se les dan esas mismas nociones, si se les enseña dibujo, si se les educa para hacer sus obras, no sólo en la forma rutinaria que se aprende en la práctica de los talleres, sino mejorándola por medio del arte, aprendiendo cómo se hacen los muebles hermosos, las decoraciones agradables a la vista, las construcciones bellas, las rejas i demas objetos de fierro, segun los grandes modelos, los carruajes elegantes, los cien utensilios i artículos diversos de uso indispensable que la industria produce i que el gusto del público exije cada dia en nuevas i mas refinadas formas, es seguro que ellos producirán lo mismo que hoi viene del estranjero i saldrán de esta tutela que no tiene mas razon de ser que la ignorancia en que se les mantiene por falta de escue-

las adecuadas i realmente prácticas.

Tan importante es este ramo de la enseñanza que, en un país como la Inglaterra, apénas se hace hoi otra cosa entre las personas que se ocupan de los problemas de la enseñanza, que fomentar la fundacion de escuelas de arte industrial. Fué esta la conclusion a que se se llegó en una prolija investigacion hecha para determinar la causa de la constante derrota de los productos ingleses en los mercados del mundo, a pesar de su buena calidad. Se comprobó entónces que los otros competidores, franceses, alemanes i norte-americanos, daban al público esos mismos productos en formas mas variadas, adaptables a los gustos diversos, basadas sobre cierta concepcion artística, susceptibles de modificarse con la flexibilidad que da el arte, miéntras el obrero ingles permanecia estacionario en sus viejos tipos inmutables, aprendidos rutinariamente en el taller sin esperanzas de ser mejorados.

La escuela de arte aplicado a la industria seria, pues, no sólo un elemento poderoso para levantar el nivel jeneral de la cultura, tendiendo a formar el gusto, sino que, ademas, constituiria la manera mas práctica e inmediata de fomentar la produccion industrial del país, mejorando sus resultados i haciéndolos, en consecuencia, valer

Conveniente es que se mantenga una escuela de bellas artes puras, donde numerosos talentos se aprovechan i dan luego honra al país en las mas altas producciones del injenio humano. Pero, las artes puras son un lujo que sólo vive ampliamente en las sociedades mui ricas que pueden pagarlo. Muchos jóvenes de verdadero merito salen de la escuela de bellas artes con su título, con sus premios, con sus cuadros i esculturas, i con el derecho de morirse de hambre por falta de público que les de trabajo.

Esos talentos artísticos podrian aprovecharse en un sentido práctico, inmediatamente útil, en una escuela de arte aplicado a la industria, donde las formas bellas, el buen gusto i las tendencias refinadas se aprovechan para la produccion de lo necesario i útil, que en las sociedades civilizadas debe tambien ser bello i en todo caso agradable.

La Comision Mista i el Congreso harian bien en no oponerse a la aprobacion de ese item propuesto por el Gobierno, mezquina partícula destinada a ensayar algo verdaderamente práctico, interesante para todas las clases sociales i que realiza por completo los fines que debe tener la instruccion del Estado.

El arte decorativo al traves de los siglos.

I

El oríjen de este arte se pierde en la noche de la mas remota antigüedad.

El hombre primitivo, obligado naturalmente para defenderse i protejer su existencia, a labrarse armas con todo lo que encontraba a mano, supo bien pronto sacar provecho de las maderas de los bosques en que vivia i como la madera se presta mui bien al trabajo por su poca resistencia, el hombre pudo fácilmente trazar las primeras manifestaciones de aquel gusto decorativo que es innato en la especie humana. La necesidad de ponerse al reparo de las fieras, i, protejer de la intemperie la entrada de su primera habitacion, la caverna, inspiró al hombre primitivo la idea de las empalizadas, en cuya construccion deja los primitivos rastros de su futura aptitud i de su tendencia a la simetría.

Mas adelante el mismo cariño que cada cua! cobra a los utensilios i armas que son de mas utilidad en la vida, i el amor para su mujer, hicieron hacer al hombre, milagros de inventiva i de injeniosidad. En efecto; se han encontrado mangos de hacha i cabos de flecha ornados de incisiones simétricas i adornos muliebres en madera, hueso i piedra, con incisiones que, aun cuando rudimentales, atestiguan el rápido progreso hecho por el hombre en la vía del arte, i prueban que el sentimiento artístico no es esclusivamente el producto de una civilización mui adelantada, pues, nuestros projenitores conocieron este sentimiento en una época en que vivian en estado de completa barbarie.

Así tuvo su orijen el arte del dibujo i del grabado. Contemporáneamente apareció la escultura. Las primeras huellas de este arte consisten en Ídolos toscamente modelados en pedazos de piedra o de madera, i representados muchas veces por piedras simplemente bruñidas, como los que se encontraron en Delos.

Como todos los pueblos primitivos se asemejan, así para darse una idea de lo que debian ser las decoraciones i los muebles de los habitantes de las cavernas i de las ciudades palustres, basta fijarse en las costumbres i productos artísticos de las hordas salvajes todavía esparcidas en algunas partes de la Tierra.

Dejando aparte los tiempos prehistóricos, de los cuales tenemos nociones mui incompletas, i por consiguiente poco claras, pasaremos a estudiar la civilización mas antigua o reputada mas antigua. Aquí los documentos abundan. El antiguo Ejipto nos ha dejado un sinnúmero de obras artisticas e industriales levantadas por sus artistas i obreros i una esposición completa de sus costumbres i usos, representados en las paredes de sus templos i en el interior de sus tumbas. Del estudio de estos documentos aparece claro que los antiguos ejipcios sabian trabajar las piedras duras, los metales, el vidrio, el marfil etc., al mismo tiempo que eran habilísimos constructores i tallistas,

Algunas estatuas ejipcias talladas en piedra dura i en madera, emanan tal sentimiento de vida i un *verismo* tan palpitante que deja admirado al observador moderno.

Los muebles de los antiguos ejipcios no son ménos dignos de admiracion. A la elegancia de la línea, reunen la riqueza i el buen gusto en la parte ornamental, algunos estan incrustados de esmalte, de marfil, de ébano; otros están decorados con finísimas i brillantes pinturas.

En los museos europeos se conservan infinidades de muebles i utensilios del Ejipto antiguo: camas, sillas, mesas, vasos, ar-

mas, etc., i una serie de sarcófagos de momias de esquisita elegancia, que son excelentes obras de ebanistería i de pintura.

Los antiguos ejipcios se inspiraron en sus obras únicamente en la Naturaleza; de abí el oríjen de su excelencia.

Mas tarde sufrieron las leyes decorativas impuestas por la relijion i se dejaron llevar a la imitación del arte de otros pueblos, i de ahí el oríjen de su decadencia artística.

H

Los productos en el Arte Decorativo de la antigua Asiria llegaron a nosotros representados por mui escasos i raros modelos; pero los espléndidos revestidos de bronce i marfil, que se han encontrado, bastan para darnos una magna idea, de la idea Decorativa profusa en todos los detalles arquitectónicos i en los utensilios de uso comun, i para decirnos cuanto esplendor de escultura i de colores lucia en los templos i palacios reales de Susa i de Echatania. La forma i la manera de decorar de los Asirios ya sea en los utensilios i muebles que se hallan en las paredes i monumentos, se parecen en todo a las de los Ejipcios, i esto se esplica por las relaciones entre los dos países. Prueban la verdad de lo que acabamos de decir, unos objetos encontrados en Venecia i Palestina, a donde hai rastros de las dominaciones de ámbos pueblos.

La Judea era entónces un sitio de tránsito de las caravanas que venian del Ejipto, de la India i del Asia Menor, i de ahí la falta absoluta de carácter propio en los poquísimos modelos encontrados.

(Continuará).

Construccion moderna.

¡Qué hermoso es el chalet que en este número de EL ARTE INDUSTRIAL, damos a nuestros amables lectores!

A la primera vista se comprende de dónde vienen aquellas líneas armoniosas i elegantes, por aquellas formas inimitables por la sublime dignidad i belleza que lo forman. Es una hermosa construccion de los alrededores de Paris, de aquella patria privilejiada que nos manda la sedería, la mueblería, la platería, las joyas, la porcelana; en fin, artículos que nos deslumbran por su belleza, nos atraen con sus encantos, con su fino i delicado gusto; encantos, gustos, etc., que no tienen rival en la Europa entera.

Ella marcha, pues, a la cabeza del arte, i nos señala la senda por donde nosotros debemos caminar para llegar mas tarde i como ellos a la perfeccion.

Tratemos entónces de imitarlos, dedicándonos desde la mas temprana edad al estudio del dibujo, de ese sublime arte que es el secreto en que descanza la base inconmovible del inimitable jenio frances.

Pidamos a nuestros gobernantes se cultive este importante ramo en las escuelas para bien de nuestros hijos, pero que se haga con saber; que se dediquen mas horas a su estudio, pues hoi los niños salen de la escuela sabiendo muchas cosas, pero de dibujo nada.

En fin, mucho podríamos estendernos sobre este punto de tanta trascendencia para el progreso i adelanto de nuestros obreros, i con estos de todas las industrías del país, pero esta no es la ocasion.

Utilizacion de los residuos industriales.

Llama la atencion una Revista sobre la utilidad de los residuos que, por ignorancia o rutina, se arrojan en concepto de inútiles en las grandes i pequeñas industrias.

Prescindiendo de las industrias químicas, que dan infinidad de residuos cuya enumeracion seria interminable, nos encontramos con la de los altos hornos, que sirven para la fabricacion de cemento; en Francia hai varias fábricas, una de las cuales produce 1 000 Kg en 80 minutos.

Las destileras dan la vinaza, que tiene gran número de aplicaciones; las fábricas de azúcar de remolacha, la pulpa i la melaza, así como otro producto utilizado como abono; la tintorería deja aguas utilizables de las que se estrae carbonato de potasa, estaño, etc.; los curtidos de pieles i el trabajo de madera dan asimismo residuos de aplicaciones bien conocidas; los desperdicios de animales que se benefician en los mataderos de los que se estrae la cola para pegar; i los objetos de asta, materia cuyos residuos, convenientemente tratados, se venden a precios demasiado subidos en los mercados estranjeros.

En Francia, Estados Unidos, Inglaterra, etc., hoi se aprovechan los gases de fundicion de los altos hornos que ántes se perdian. Hace sesenta años que se cerraron las salidas de estos gases al aire, utilizándolos para calentar el aire en otros usos. Se ha ensayado tambien la utilización de todos los demas gases resultantes de la combustion del carbon, especialmente para calentar los calderos de ciertas máquinas, como bombas, montacargas, etc. Pero actualmente se aplican los gases a la alimentación directa de poderosos motores a gas.

Ha de tenerse tambien presente que la utilizacion de muchos residuos redunda no sólo en beneficio comercial sino tambien en pro de la salud pública,

Industrias, artes i oficios.

Figura 1. Pozo de escape para el caso de incendio.

M. F. H. Dedrick de Grand View en Hudson (Nueva York) ha inventado el artefacto cuya figura se halla signada con este número en la lámina adjunta, cuyo objeto es asegurar la salida en caso de incendio. Una serie de trampolines inclinados, sostenidos por muelles, se suceden verticalmente de modo que una persona que se eche sobre uno de los tabletos del trampolin superior o de un intermedio, vá cayendo sin lastimarse por todos los demas, hasta llegar a la caile.

Figura 2.-Nuevo modelo de colgar para la ropa.

El desagradable olor de la naftanila, sobre todo en las prendas de fiesta o de gala, que son las que mas se impregnan de dicha sustancia, puede evitarse, sin correr por eso el riesgo de la polilla, por medio de la bolsa-colgador inventada por S. L. C. Millan.

Viene a ser el nuevo utensilio como un porta-monedas de grandes dimensiones, constituido por un saco de tela engomada o pintada, cuya boca se cierra con una montura metálica del modo que indican las figuras.

Tanto la tela como la cerradura son infranqueables al polvo o a la polilla.

Las prendas de ropa se cuelgan dentro de la bolsa como de ordinario, i un gancho esterior sirve para colgar el aparato en el armario.

Figura 3.—Sobre de seguridad para cartas.

«¡Qué escándalo ha precedido A la invencion del vestido! ¡I qué delitos tan graves A la invencion de las llaves!»

Decia un poeta español. I hoi hubiera añadido: il qué portento de manipulaciones de Física, de Química i de Mecánica por parte de los encargados de custodiar la correspor dencia ajena, ántes de que se inventaran los sobres de seguridad!

Existen varios inventos de esta clase, destinados todos a hacer imposible la violación de la correspondencia.

En las figuras que se diseñan en la lámina correspondiente a esta seccion, está el mejor de los modelos inventados hasta hoi. Sobre los cierros laterales P. P. del sobre, se coloca una tiri-

ta M parafinada, cubriendo todas las junturas del reverso del cierro inferior O. O. hasta la boca del sobre.

Una línea de perforaciones, indicada en las figuras, sigue cerca de uno de los bordes O, i el último doblez engomado N. al cerrar la carta, queda pegado rosando la línea de agujeros.

Cualquier tentativa mecánica para abrir el sobre, produce la ruptura del mismo por la parte perforada i si el procedimiento es el del vapor de agua, se derrite la parafina del postizo M. produciendo una mancha indeleble en el papel.

Figura 4.—El calzado impermeable

Un zapatero frances ha ideado una injeniosa modificacion en la manera de hacer los zapatos, por la cual consigue hacer a éstos enteramente impermeables.

El pié se encuentra comprendido, en la bota, entre la suela i el empeine, i el nuevo inventor hace la primera de dos piezas b i c de cuero. En cuanto al empeine, ordinariamente se repliega bajo el pié para ser cosido a la zuela, dando paso al agua con suma facilidad, pero el zapatero de nuestra referencia en vez de replegarlo lo adosa a la doble suela encerrándolo entre ésta i la banda de cuero que rodea esteriormente el zapato, sujetándolo todo con dos costuras paralelas.

Este calzado, sometido a esperiencias, pudo permanecer 6 meses en el agua sin acusar en su interior la mas lijera señal de humedad.

Es pues, un calzado mui recomendable que viene a desterrar, casi por completo, a las zapatillas de goma, aunque su forma es ancha i poco elegante. Tambien servirá a nuestros cazadores i a los jóvenes que se dedican al Sport.

Fig. 5 i 6.—Detentores de seguridad para ascensores.

El señor C. R. Wright ha presentado a la American Society of Mechanical Engineers una série de innovaciones para detener la caida de los ascensores en caso de avería. Teniendo en cuenta que la mayor parte de las catástrofes en los ascensores funiculares son debidas a desarreglos del mecanismo o a la ruptura de los amarres mejor que a la ruptura de los cables, el señor Wright hace consistir su método de seguridad en la adopción de reguladores centrifugos, que detienen el ascensor cuando la velocidad excede de cierco límite. Uno de los modelos adoptados se reduce a un tambor, por el cual pasa el cable H K, provisto de paletas jiratorias M R S, sostenidas por muelles N, i que se abren por efecto de la fuerza centrifuga hasta producir el escape de un mecanismo de corchete U T, el cual frena el cable desde el momento en que la velocidad del ascensor se hace excesiva.

Los estremos H i K del cable van a parar: uno al motor i otro a un amarre del coche-ascensor, cuyo anudamiento reproducimos en figura aparte.

Fig. 7.-Multador automático.

Un inventor español ha ideado un aparato por medio del cual se multa automáticamente a los cocheros de los tranvías eléctricos que imprimen a sus vehículos una velocidad mayor que las ordenanzas permiten. Nuestro grabado representa una seccion esquemática de este multador, en que R es un regulador de fuerza centrifuga en relacion directa con las ruedas del coche; cuando la velocidad excede del límite permitido, el regulador levanta la palanca cuyo eje está en F, bajando el cliquete A i disparándose el mecanismo del multador. La fuerza motriz de éste no es mas que la tension de un muelle helicoidal M, que empuja una cremallera terminada en un piston situado en el interior del ciliudro hueco T. Un engranaje B C N relaciona la cremallera con el disparo A i con el regulador de aspas P.

Al hacerse cargo del vehículo, el cochero debe colocar en el tubo T una cantidad de 5 o de 10 centavos, para lo cual basta levantar la tapa L cuya llave tiene el inspector o la autoridad correspondiente. Cada vez que el coche adquiera una velocidad excesiva, se dispara el cliquete A, i empezarán a caer monedas, a razon de una cada treinta segundos sobre el timbre K, con

cuyo sonido se advierte de paso al cochero las multas que se van pagando. Al terminar la jornada, el inspector o la autoridad encargada de cobrar las multas recoje las monedas que hava en el fondo del aparato.

Figura 8.-Maquina para cortar el pan.

En los restaurants, cuarteles, grandes establecimientos de educación, beneficencia, etc., cuando de la clase de pan que damos en la figura se use, puede ahorrar mucho tiempo el utensilio inventado por Mr. G. L. Leachman para cortar de una vez varias rebanadas de pan.

Un marco C que sostiene cinco o seis cuchillas paralelas, presenta por un lado una guía que corresponde al estremo ya cortado del pan i por los contiguos un mango i dos ojetes A que sirven de visagras. Por estas últimas pasan dos montantes fijos en una tabla, que a su vez lo está en la mesa por medio de un tornillo inferior de presion M. Unas guías verticales B en forma de arco de círculo i otras horizontales N situadas en la tabla, aseguran el perfecto movimiento de las cuchillas.

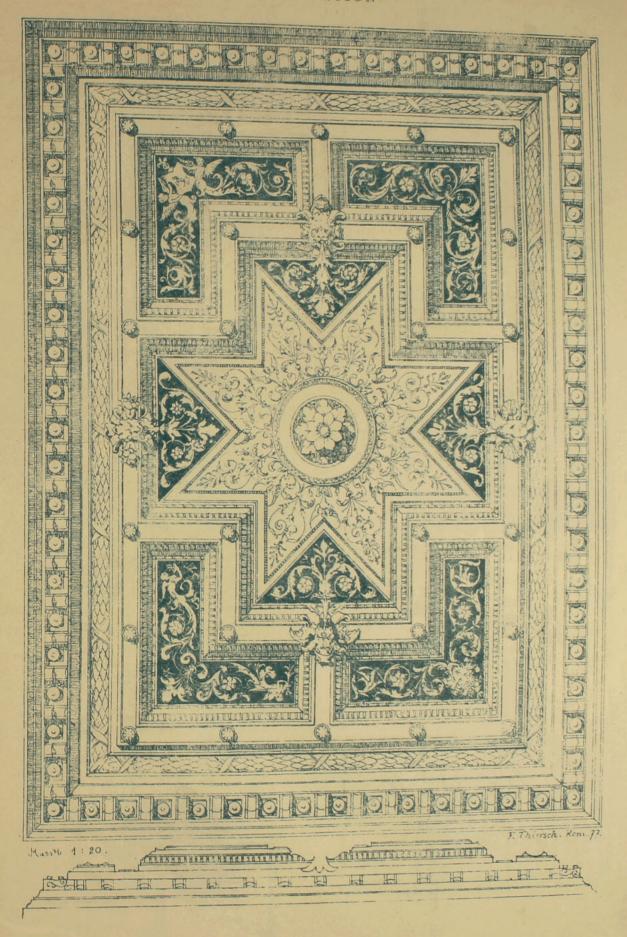
Como los objetos permiten a las cuchillas un lijero movimiento lonjitudinal, i ademas unos muelles horizontales ayudan por la parte de aquéllos la presion que se ejerce en el lado opuesto por medio del mango, los cortes producidos por el aparato resultan regulares i completos.

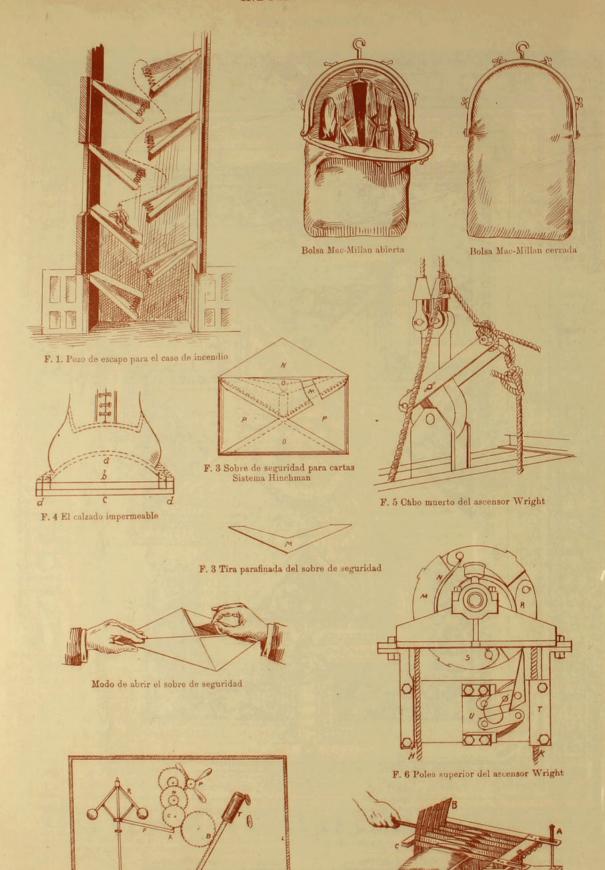
El arte del tornero. (1)

INTRODUCCION

No creemos necesario, en un tratado práctico, como es este, del arte del tornero, comenzar el libro con una introduccion histórica, cuya oportunidad seria mas que problemática; habremos de contentarnos con decir que el arte de tornear es mui antiguo, puesto que en los museos se conservan vasos i otros objetos hechos al torno, i que del arte hablan escritores como Horacio i Virjilio, con lo cual, i la natural discrecion del lector, queda probada su respetable antigüedad. Mas, aunque tan viejo es, como queda dicho, ello es cierto que, hasta fines del siglo último, no comenzó a adquirir este arte el gran desarrollo que en el nuestro ha alcanzado, siendo ántes, mas que una profesion independiente, mero ausiliar de otras muchas profesiones, a las que prestaba su eficaz concurso. Hoi, con la invencion de máquinas complicadas e injeniosas, con la ayuda del vapor, que tan portentosa revolucion ha operado en la vida moderna, con el magnifico desarrollo industrial que presenciamos, el arte del tornero ha llegado, si no a su apojeo, porque nadie puede predecir el término de tanta maravilla, por lo ménos a ser un factor importantisimo de la industria. No hai materia, por dura que sea, que no pueda ser torneada, viéndose hoi, en talleres bien montados, enormes piezas de hierro sometidas al torno i trabajadas dócilmente, con tanta precision i facilidad como en otro tiempo los pedacitos de madera que sirven para hacer las piezas del ajedrez. Al torno se somete el acero en la fabricación de los cañones, i otras muchas industrias utilizan con gran ventaja el torneado, siempre que se quieren obtener superficies pulimentadas cilíndricas, esféricas, i aun planas, hechas con

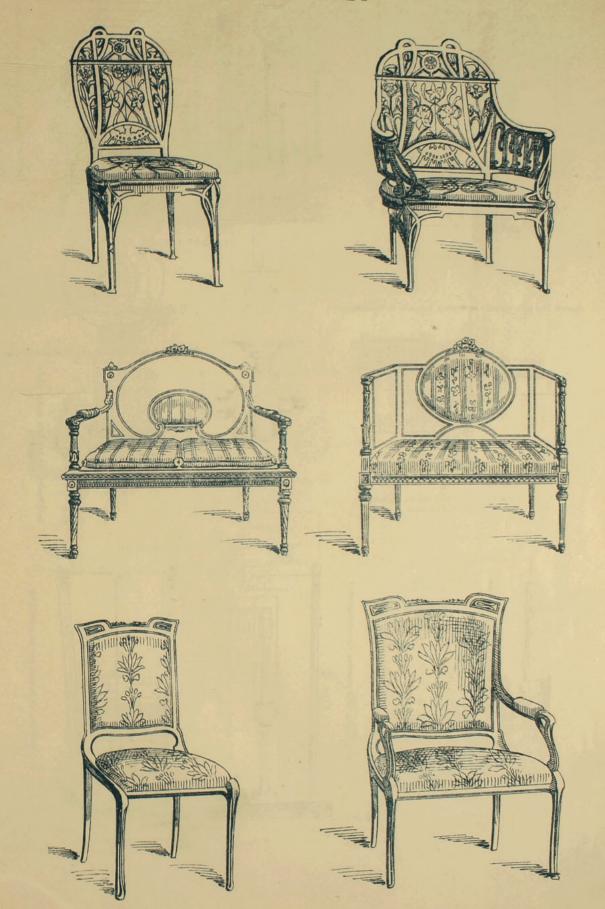
Basta lo dicho para comprender la inmensa utilidad de este arte, i, hasta para adivinar, siquiera sea vagamente, a qué grado de perfeccion habrán llegado los procedimientos que emplea, i cuán injeniosas serán las máquinas de que se vale. I si esto no bastara, la simple enumeracion de objetos de todas clases, obtenidos por medio del torneado, harian bien patente nuestro aserto. Adonde quiera que volvamos la vista, si en el campo de observacion se hallasen objetos fabricados por la mano del hombre, es seguro que tropezaremos con algunos, en los cuales el torneado ha dejado impresas sus huellas. Portaplumas, cabos de cuchillos, tabaqueras, tinteros de madera, piezas de ajedrez,


mangos de martillo, botones de nácar, hueso o marfil, devanaderas, tornillos, tuercas, bolas de billar, patas de silla o de mesa, molduras de todas clases, mil objetos, en fin, de utilidad o de recreo, en todo o en parte hechos a torno, demuestran claramente que, a la altura a donde ha llegado la industria moderna, es de todo punto imposible prescindir de un arte que tan eficaz ayuda le presta. I, digámoslo de una vez; una de las cosas que mas han hecho progresar este arte, es el atractivo grande que ejerce sobre los que lo practican, siquiera sea en calidad de aficionados. De seguro no hai, entre*las artes manuales, ninguno tan agradable i entretenido como el arte del tornero, i sin duda por esta razon lo han practicado hasta los reyes, si hemos de creer lo que se cuenta de mas de uno. A los aficionados se deben, pues, muchas i mui injeniosas modificaciones en los tornos i en los procedimientos empleados.

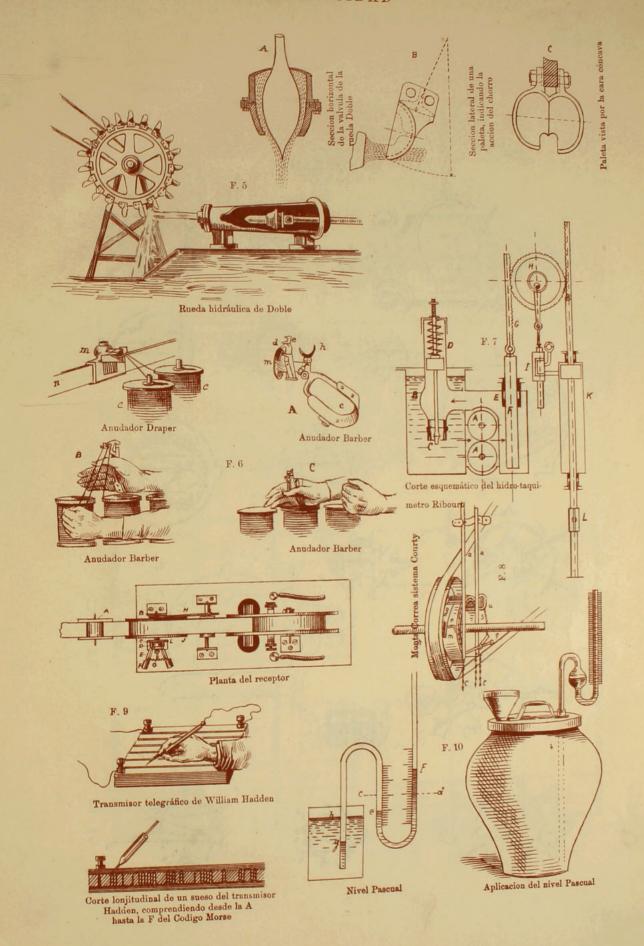

En el presente libro no hemos de tratar con igual estension de todas las aplicaciones del torno, no solo porque el espacio de que disponemos es reducido, sino porque las aplicaciones que tiene a determinadas industrias, entran mas bien en el cuadro de estas mismas industrias que en un tratado jeneral, i porque ademas exije conocimientos i estudios especiales, para cuya adquisicion será preciso recurrir a otros libros de indole mui distinta i consagrar muchas horas a su estudio. Habremos de limitarnos, segun esto, en primer término, a esponer los princicios jenerales, i luego a esplicar con el preciso detalle, de la manera mas clara i práctica posible, a fin de que nuestro Manual sea un libro verdaderamente útil, las máquinas i herra mientas que se emplean, el modo de usarlas i el de obtener con ellas piezas perfectamente torneadas, empleando las distintas clases de materias de uso mas jeneral.

El tornero que desee llegar a poseer bien su arte, ha de tener nociones de jeometría i de mecánica, si quiere darse cuenta exacta i racional de lo que hace; ha de conocer las materias susceptibles de ser bien trabajadas, el modo de prepararlas, conservarlas i teñirlas, si se trata de madera, hueso o marfil; ha de conocer tambien la manera de reparar las herramientas, afilarlas, templarlas, etc.; ha de tener o adquirir cierta práctica especial de carpintería i herrería; ha de ser, en suma, algo mas que tornero, porque en el ejercicio de su profesion tendrá necesidad a cada instante de echar mano de otros conocimientos, unas veces para completar su obra, i otras para mantener en buen estado las máquinas, utensilios i herramientas que son de uso constante. En cuanto a los conocimientos de jeometría i de mecánica, no debemos esponerlos aquí, sino limitarnos a consignar su utilidad i recomendar su adquisicion. Por lo que toca al de las materias primeras que el tornero consume, haremos una esposicion sucinta, metódica i clara de las cualidades i defectos inherentes a dichas materias, precediéndolas de ciertas nociones jenerales relativas a la estructura i composicion, no de cada materia, sino de cada uno de los grupos en que las clasificaremos para facilitar su estudio. Por último, respecto al modo de reparar los diversos utensilios, algo, aunque poco, hemos de decir tambien en el discurso de este trabajo. Ya se comprende que, sin riesgo de dar excesiva estension a este libro, i hasta de falsear su propósito, no podríamos detenernos mucho tiempo en los diversos particulares apuntados. Mas detenido estudio consagraremos al arte de tornear progiamente dicho, porque así responderemos exactamente al título del libro i al pensamiento de su editor, que no es otro sino servir de guia práctico i seguro al artífice tornero, es decir, que el objeto propuesto es el de enseñar el manejo de los utensilios i el modo material, por decirlo así, de tornear las piezas.

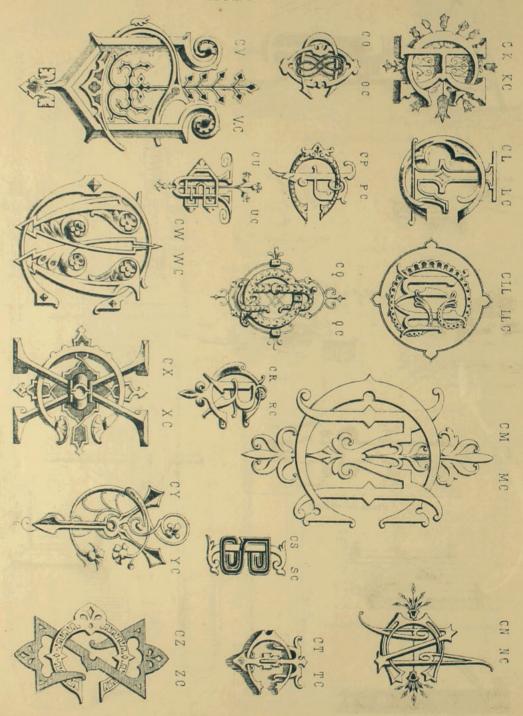
Hemos de descartar completamente de nuestro trabajo todo lo que no sea práctico, i prescindir tambien, si no en absoluto, por lo ménos en gran parte, de todos aquellos instrumentos sustituidos ahora en los talleres por otros mas perfeccionados, pues deseamos que nuestro Manual sea, si así podemos espresarnos, un taller escrito, i nó un museo de antigüedades. Hemos consultado los libros mas recientemente publicados acerca del arte del tornero, a fin de que la presente edicion del nuestro, aprovechando todos los inventos, no dejara nada que de-

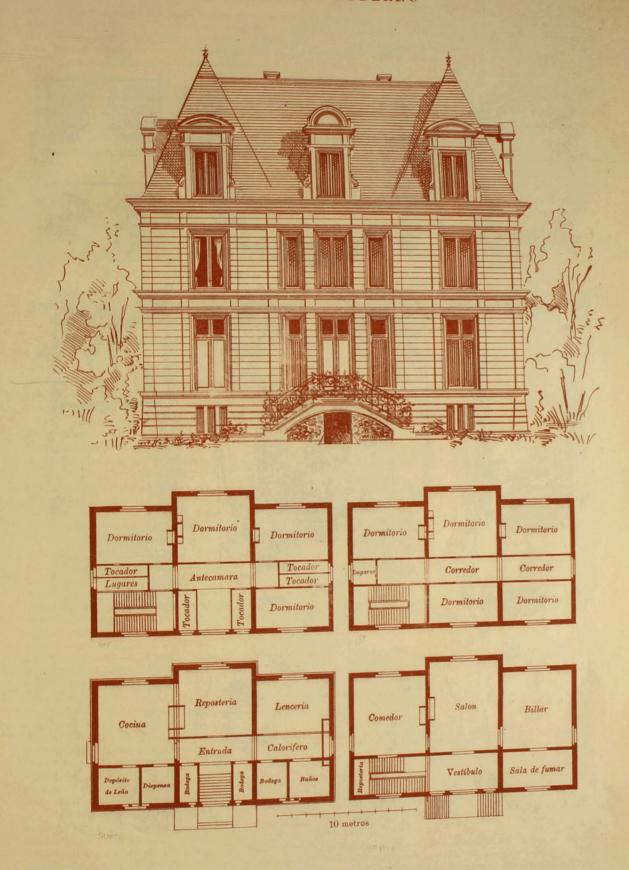

⁽¹⁾ Desde el presente número vamos a dar comienzo a la traduccion de una obrita de gran importancia para los obreros que se dedican a este trabajo.



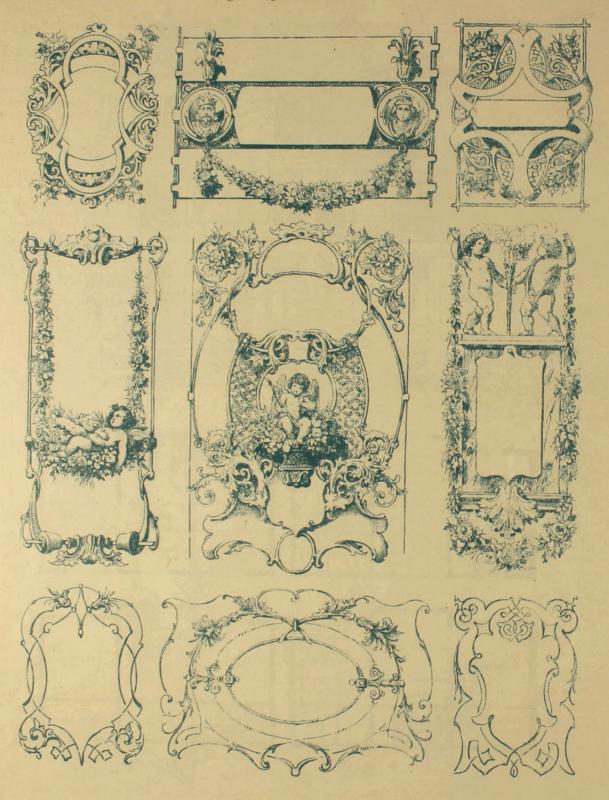

F. 8 Màquina para cortar el pan

F. 7 Multador automático





ELECTRICIDAD



MONOGRAMAS

Figuras aplicadas a la Industria

sear; pero ninguna máquina ni teoría hemos aprovechado sin discutir concienzudamente sus inconvenientes i sus ventajas, pues hai inventores que, a trueque de innovar, pondrán las cosas en peor estado del en que las encontraron, i nuestro objeto, ya lo hemos dicho, es hacer un libro práctico i de utilidad incontestable.

No abrigamos la presuncion de que el método que adoptamos sea el mejor, pero, sí, creemos firmemente que es bueno, práctico i útil. La distribucion del libro será la siguiente:

- 1.º Estudio de las materias primeras empleadas en esta industria (minerales, animales i vejetales).
- 2.º Composicion de un taller, máquinas, utensilios i herramientas.
- 3.º Operaciones del tornero; modo de tornear las distintas materias, segun su clase.

Estas tres partes en que está dividido el libroson igualmente interesantes para el tornero. De nada le serviria conocer las herramientas si no les enseñásemos el modo de servirse de ellas i no podria tornear, si el conocimiento de las materias empleadas no le ayudase. No nos cansaremos de recomendar que huya del empirismo, de los tanteos, de lo inseguro, pues con ello ganará tiempo i dinero.

Para terminar esta introduccion nos permitiremos dar un consejo al aprendiz de tornero, i es el siguiente: En todo aprendizaje lo mas difícil son los comienzos; pero es necesario, si se ha de progresar, repetir una i otra vez las operaciones mas sencillas, hasta adquirir seguridad en la mano i hacerlas con perfeccion, ántes de emprender otras mas delicadas; el aprendiz debe moderar la impaciencia natural de los que empiezan, i no dar un paso sino sobre seguro, para no merecer en el ejercicio de su arte, una calificacion que todo el mundo debe evitar: la de chapucero. Con un poco de paciencia i buena voluntad se consigue todo cuanto se desea; lo esencial es trabajar atentamente i repetir muchas veces una misma operacion, tratando de hacerla cada vez mejor.

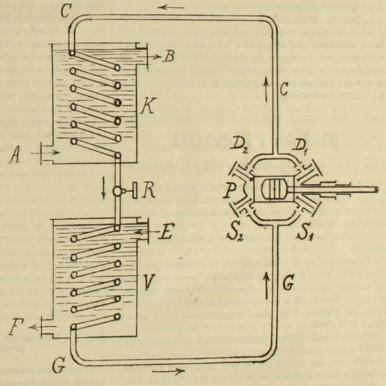
con la Primera Parte, que trata: MATERIAS QUE PUEDEN ELABORARSE EN

Máquinas frigorificas.

Produccion i aplicacion del frio artificial. Diferentes procedimientos de produccion de frio i trabaio que éstos consumen.

1. Procedimientos para la produccion del frio.-Los procedimientos actuales para la produccion de frio artificial

se basan todos en el mismo principio: absorcion enérjica del calor por la evaporacion a baja temperatura de líquidos mas o ménos volátiles.


Las antiguas máquinas de aire, en las que se utilizaba simultáneamente el frio i el trabajo producido por la espansion del aire atmosférico, eran mui poco económicas. Por una parte la poca capacidad calórica del aire (0,2377 por grado i por kilógramo, en números redondos o,3 calorías por metro cúbico) necesita bajar considerablemente de la temperatura límite a la espansion, tomando así un gran gasto de fuerza; por otra parte la cantidad de aire que hai que comprimir es tan grande que exije máquinas i aparatos excesivamente desproporcionados en los que las resistencias pasivas son enormes, porque estas máquinas se componen jeneralmente de un compresor, un enfriador, en el cual el aire comprimido pierde el calor desarrollado por la compresion hasta dejarlo a una temperatura cerca de la que tenga el agua empleada en este enfriador, en fin, de un cilindro de espansion en el que se produce todo el trabajo utilizado por el comprensor. De esta manera el aire, a una temperatura suficientemente baja, está en estado de absorber una considerable cantidad de calor. Este cilindro de espansion i tambien el compresor se encuentran jeneralmente acoplados a la misma manivela i sobre la misma vara del émbolo del compresor (Tandem), teniendo el primero de estos cilindros una distribucion semejante a las de las máquinas a vapor.

Como las máquinas de aire no han presentado hasta la época ninguna ventaja en la industria i han caído completamente en desuso, nos ocuparemos solamente de los sistemas de máquinas de hielo que tienen aplicacion jeneral en toda industria frigorifica. Estos sistemas son tres: máquinas de absorcion, máquinas de condensacion i máquinas mistas,

I. Máquinas de absorcion son aquellas en que el amoniaco es

el solo cuerpo intermediario empleado, i es absorbido por el agua despues de su volatilizacion bajo la influencia de un calor directo (vapor), i donde el amoniaco en seguida es condensado nuevamente para volver a volatilizarse con el calor despues de haber absorbido a su vez el calor del cuerpo que se quiere enfriar.

II. Máquinas de condensacion son aquellas en que el amo-

niaco, el anhidrido carbónico, o el anhidrido sulfuroso (1) perfectamente secos, son, despues de su volatilizacion en los serpentines del refrijerante, aspirados i comprimidos por un compresor en los tubos de un serpentin de un aparato que se

⁽¹⁾ Daremos la acepcion química de estos fluidos i así hablaremos de anhidrido carbónico i anhidrido sulfuroso en lugar de ácido carbónico i ácido sulfuroso, que son asignaciones falsas

llama condensador i que es servido por una corriente de agua lo mas fria posible, haciendo que el gas se condense i tome la temperatura del agua, como en el caso de las máquinas de absorcion. De este último aparato pasa el gas por una llave reguladora de espansion que se denomina regulador, siendo su principal objeto regular la diferencia de presiones entre el condensador i el refrijerante.

III. Máquinas mistas.—Estas son análogas a las máquinas de absorcion i en que el compresor reemplaza al vapor que sirve en aquellas para la volatilizacion del amoniaco.

De los diferentes sistemas de máquinas de hielo que vienen teniendo mayor aplicacion en la industria—sin tomar en cuenta las de aire líquido, que hasta el presente han demostrado que no son económicas ni tampoco prácticas, como se verá mas adelante—es preferida la máquina por compresion i de gases liquefiables que Linde i Pictet han llevado a un alto grado de perfeccion.

La figura 1 nos indica en esquema las relaciones de las diferentes partes de la máquina por compresion.

Como se ve, el compresor P que aspira i comprime los vapores del fluido intermediario tiene la construccion de una bomba de aire, con válvulas automáticas. Las válvulas de aspiracion están indicadas por S¹S² i las de compresion por D¹D².

El conducto de compresion comun CC' une el compresor al condensador K, en el que se encuentran uno, dos o tres serpentines, segun sea la fuerza de la máquina, i que están bañados por agua fria que entra por A i sale por B. Un ajitador puesto en el interior de estos serpentines, i que no está indicado en la figura mantiene al agua en constante movimiento.

La llave R, puesta entre el condensador i el refrijerante en el cañon de union de estos dos aparatos, regula el pasaje del fluido condensado del uno al otro lado. La construccion del refrijerante está basado en los mismos principios de los del condensador, es decir, tiene serpentines i un ajitador para el agua salada que baña estos serpentines, en lugar del agua dulce que baña al condensador.

Mecánica i Electricidad.

Figs. 1 i 2.—Nuevo aparato para el tiro de chimeneas.

El señor Hudson ha presentado a la Asamblea jeneral de gasistas de Manchester un aparato cuya idea le ha sido sujerida por sus observaciones referentes al tiro de las retortas del gas i de las chimeneas de los hornos.

Estas observaciones le han conducido a las conclusiones siguientes:

«La cantidad de aire aspirado por la chimenea principal varia con las horas del dia; no llega a ser nunca constante e influye en el equilibrio de la temperatura del horno. Esta circunstancia recomienda el uso de reguladores automáticos colocados en el trayecto del humo i equilibrados por la misma fuerza de la corriente...»

El señor Hudson ha dado forma práctica a su teoría por medio del aparato representado en las adjuntas figuras, el cual, en caso de variacion notable en el tiro, obra sobre el rejistro cerrándolo mas o ménos segun la conveniencia del momento.

Segun el Journal des usines á gaz, del cual estractamos la noticia, el funcionamiento del aparato Hudson es el siguiente, que se funda en una teoría análoga a la de las trompas aspirantes:

En uno de los lados de la chimenea, se abre un tubo S acodado, que termina en la campana B de un pequeño gasómetro; dicha campana se comunica por medio de la cadena F, arrollada en la garganta de la polea E, con un contrapeso H debajo del cual está colgando un tubo T estirado interiormente en espiral. La válvula N se prolonga, ya sea directamente (figura 2.ª) o ya por el intermedio de un engranaje cónico (figura 1.ª), segun que el rejistro esté en el albañal horizontal o en la chimenea, por una pieza vertical en relacion con el tubo T. Un tornillo T', cuyo paso es igual al de la estría interior del tubo T, obliga a éste a jirar al rededor de un eje cada vez que sube o baja por los movimientos de la campana B.

El vacío que se forma en el gasómetro por el tiro de la chimenea, es el que determina los movimientos de la campana i con ellos el cierre mas o ménos completo del rejistro.

Los ensayos hechos por el señor Hudson le permiten asegurar la regularidad del tiro de las chimeneas de las fábricas i de los hornos, por medio de su aparato, aún en los dias de mayor tempestad

Figs. 2' 2" 2" i 2"".-El péndulo de Foucault.

El clásico e injenioso esperimento de Foucault para la demostracion de la rotacion de la Tierra, puede repetirse en cualquier local, si no con el lujo i la visualidad con que se hicieron en el Panteon de Paris las primeras pruebas oficiales i con que se repiten en nuestros dias, cuando ménos, con mas holgura por parte del aficionado que quiere convencerse a sí mismo o del profesor que quiere convencer a sus discípulos.

Algunos constructores alemanes han puesto a la venta, hace tiempo, péndulos de Foucault en miniatura, mui a propósito para la demostracion aludida, pero el injenioso frances señor Cannevel es quien parece haber dado, recientemente, la forma mas sencilla del referido péndulo.

La suspension de éste puede hacerse por medio de un alambre de piano, de 35 centésimos de milímetro de diámetro, de cuya parte inferior pende una bola de plomo, recubierta de una capa de cobre, que constituye el péndulo, siendo el peso de la bola de unos 1 250 gramos.

La parte fija de la suspension está formada por una pieza de hierro, en la cual va empotrado el estremo afilado del alambre de modo que pueda éste oscilar en todas direcciones sin que vibre la suspension o se altere en lo mas mínimo su rijidez. Dicha pieza de hierro puede ser, o bien en forma de redomita fuertemente sujeta al techo por un sistema de tornillos, o bien simplemente una anilla tambien sujeta de una manera invariable al techo o a un marco de madera.

Haciendo oscilar libremente el péndulo sin comunicarle velocidad ninguna, para lo cual basta apartar la bola de la vertical por medio de un hilo, al que se pega fuego con un fósforo, se ve que el plano de oscilacion va jirando lentamente, al rededor de la vertical, con la velocidad prevista por la teoría, es decir, a razon de 15°×sen φ, siendo φ la latitud jeográfica del lugar en que se hace el esperimento.

Con el aparato del señor Cannezel, que se espende completo en una cajita de pequeño tamaño, en la cual van ademas los accesorios para demostrar los principios que sirven de base al esperimento de Foucault, se puede repetir éste, aun cuando el local de que se disponga no tenga mas que tres o cuatro metros de altura. Un talus de arenilla, sobre el cual rasa a cada oscilación un estilete en que remata inferiormente la bola de plomo, sirve de índice para notar el movimiento del plano del péndulo a medida que éste va oscilando.

Fig. 3.—Utilizacion directa del combustible para la produccion de fuerza.

El desastroso rendimiento de las máquinas de vapor, que en materia de despilíarro de enerjía son las primeras entre todas las máquinas conocidas, es motivo de que se aguce el injenio de los inventores en busca de un medio directo de aprovechamiento de la enerjía calorífica en la industria.

Entre los recientes inventos efectuados en este sentido, es notable el que se describe en la patente concedida ha poco al señor Fullagar, de Newcastle.

En la máquina Fullagar el combustible, encerrado en una cavidad apropósito, cae en el hogar donde se pone en contacto con el aire para entrar en combustion, de allí pasa éste a un tubo superior, que le conduce a una turbina, indicada a la izquierda del grabado, la cual va jirando a medida que pasan por ella los productos gascosos de la combustion.

A fin de ahorrar enerjia calorifica, los gases calientes que han

atravesado la turbina bajan por un tubo de salida a un rejenerador que forma el zócalo de la máquina i en el cual ceden su calor al aire atmosférico que circula a lo largo de un serpentin para ir a alimentar la combustion.

Desconocemos el resultado económico de la nueva máquina-

Figs. 4 i 4'- Rotaciones electromagnéticas

El señor B. Dailey ha esplicado en Scientific American algunos procedimientos sencillos para la demostracion esperimental de las rotaciones electromagnéticas. Talvez el mas elemental de todos los esperimentos ideados por el señor Dailey consiste en disponer el aparatito que se indica en la figura 1.ª, del modo siguiente: se toma una barrita de acero imantado, i se le une eléctricamente por la parte inferior, con un carbon de pila; colócase entónces el pan en un vaso, de modo que el iman quede en medio i el carbon en los bordes, i en el fondo del recipiente se echa parafina fundida hasta cubrir perfectamente la union entre el carbon i el iman. Este, ademas, se barniza con una capa gruesa de parafina hasta mas arriba del nivel del borde del vaso. El iman termina superiormente en una cazoleta llena de mercurio-que puede quedar reducida a un pedazo de tubo de goma-en la cual apoya una aguja vertical soldada a una tira de zinc en forma de U, invertida. Echase en el vaso el líquido activo de una pila de bicromato, con lo cual se establece una corriente entre el carbon i el zinc, poniéndose éste en rápida rotacion, cuyo sentido depende del polo que el iman presente en su parte superior. Si en comunicacion con el carbon se ponen dos imanes iguales, de los cuales uno presente el polo positivo i otro el negativo, se podrán obtener dos rotaciones de sentido contrario, i de efecto sumamente llamativo.

La teoría elemental de las líneas de fuerza puede establecerse de un modo sencillo teniendo en cuenta que si A i B (figura 2.a) son las secciones de una barra imantada i de un alambre conductor, las líneas de fuerza del iman, en la seccion, son rectas radiales-que en el espacio va de un polo a otro-, miéntras las correspondientes a la corriente por el alambre, se forma una combinacion de líneas de fuerza, pasando la distribucion del campo de la 1 a la 2, constituyéndose un verdadero torbellino C en el cual es arrastrado el alambre por el cual pasa la corriente: el zinc del esperimento anterior. Claro que si dos corrientes, ámbas ascendentes o descendentes atraviesan el campo del iman, se sumarán sus efectos, que es lo que ocurre en el primer esperimento, o en el de la figura 3.ª, en el cual la corriente que llega de una pila pasa por dos alambres paralelos sostenidos por una misma aguja, entrando por ésta despues de haber pasado por un iman vertical barnizado, i saliendo por el mercurio de una copa-que puede ser de carton-situada en mitad del iman. Este dispositivo ofrece la ventaja importantísima de poderse invertir el sentido de la corriente, i por tanto el de la rotacion de los alambres alrededor del eje vertical del aparato.

La rotacion de los imanes por las corrientes, esplicable por la misma teoría, puede ponerse en evidencia clavando en el fondo parafinado de un vaso cualquiera (figura 4.ª) dos lápices de carbon BB' de los que se emplean en las lámparas de arco; por la parte superior se unen ámbos lápices con un alambre de cobre, de cuya parte media pende, en comunicacion eléctrica perfecta, una corta barrita de zinc, que puede ser un pedazo de negativo de una pila Leclanché. El alambre H de que pende el zinc se recubre con cera en toda la parte que queda hundida en el líquido del vaso, que es solucion de bicromato. Tómase ahora una aguja de hacer calceta V, se la imanta, i se la clava en el eje de un tapon de corcho perfectamente cilíndrico, de manera que pueda flotar verticalmente quedando la cara inferior del tapon algunos milímetros por encima de la superior del zinc. En el momento en que se coloca el flotador en el vaso, empieza la aguja a dar vueltas al rededor del zinc, rozando el tapon sobre el alambre vertical. Basta invertir la aguja para que la rotacion cambie de sentido. No hai que decir que la aguja i el tapon se han de recubrir con cera para evitar la corrosion por el bicromato.

La persona ménos hábil puede disponer estos aparatos i fabricarlos en pocos momentos, i convencerse por sí misma de los fenómenos de rotacion electromagnética que son la base de toda la teoría de los motores eléctricos.

Fig. 5.—Rueda hidráulica.

Cuando se dispone de una gran presion de agua con poca cantidad de líquido, pueden emplearse como motor, en vez de las turbinas, las ruedas hidráulicas de *empuje*, uno de cuyos últimos modelos representa nuestro grabado.

En la máquina de Doble, el agua sale a gran presion de un tubo horizontal en forma de cañon, chocando contra las paletas de la rueda hidráulica, preferentemente en las que pasan por debajo del eje. Una válvula ovoídea, movida desde el esterior por medio de una palanca, puede cerrar mas o ménos el pico por donde sale el agua, sin alterar por eso la perfecta horizontalidad del chorro. Las paletas tienen forma de cucharas, con una escotadura en el borde estremo i con una quilla en su parte cóncava que obliga al chorro a dividirse en dos partes, cada una de las cuales ejerce su empuje en uno de los ventrículos en que queda dividida dicha cara cóncava.

Fig. 6.-Los anudadores mecánicos.

Prosiguiendo los norte-americanos en su firme propósito de adquirir la hejemonía industrial del mundo, inventan cada dia nuevas máquinas que les permitan confiar a la masa de hierro lo que ántes tenia que hacer la mano del obrero, ganando en ello en perfeccion i en prontitud los trabajos ejecutados.

Cualquiera que haya contemplado durante unos instantes una devanadera de tejido habrá observado la frecuencia con que la obrera devanadora se ve obligada a buscar el estremo o cabo de los hilos que se rompen en las bobinas o carretes, para unirlo, formando o haciendo con la mano un nudo especial (llamado de tejedor), con el hilo roto del carrete del urdidor. Como éste es el oficio mas sencillo, pues solo es anudadora la obrera que por su falta de capacidad no puede ser tejedora, resulta que los nudos, aparte de su desigualdad, dejan a veces mucho que desear, ya por estar mal hechos, o bien por haberles dejado excesivamente largos los cabos, lo cual provoca la ruptura del hilo en el urdidor mismo o en el encolado o en el telar.

De ahí la invencion de los anudadores mecánicos, de entre los cuales empiezan a ser mui usados los de Barber i de Draper que representan nuestros grabados.

El de Draper m puede deslizar a lo largo de una regla o varilla n por encima de los carretes c c del urdidor. Se colocan dos o tres de estos anudadores al lado de cada devanador i cuando se rompe un hilo la obrera desliza el aparato hasta que esté mui próximo a la bobina, coloca los dos cabos del hilo roto en m i los une mecánicamente dando un pequeño movimiento circular al aparato.

Mas perfeccionado todavía i tambien mas práctico es el anudador Barber que consiste (fig. A) en una pequeña horquilla h que puede fijarse en el dedo pulgar de la mano izquierda tal como se vé eu la figura C, i unida al mecanismo m que se fija en la mano mediante la correa c, tal como se vé en B i C. El aparato que hace el nudo consta del corchete d, que se mueve hácia la derecha cuando la horquilla h va de abajo a arriba, el cual está formado de dos cuchillitas, que al moverse d hácia la derecha permiten que el hilo se coloque entre ellas en e; de este modo, una vez terminado el nudo, si se baja la horquilla h se juntan las cuchillas i cortan los cabos sueltos del nudo.

Cuando se rompe un hilo, basta parar el carrete con la mano izquierda i buscar el cabo suelto con la mano derecha, colocando las manos i el aparato como en C; la obrera pasa ahora el hilo por encima del anudador, sirviéndose de un dedo de la mano derecha i despues por detras de ϵ , el cual le reticne así como al hilo que va del urdidor, que se pasa por el anudador del mismo modo. Bajando \hbar se termina el nudo.

Fig. 7.—Hidrotaquimetro regulador para turbinas.
M. L. Ribourt, injeniero de la Compañía Fives-Lille, ha idea-

do un aparato para regularizar la velocidad de las turbinas hidráulicas, del cual representa un corte esquemático el grabado que acompaña a estas líneas.

El fundamento de la regulacion es el pequeño contador A que pone en movimiento contínuo un circuito líquido cerrado, de agua pura o aceite, cuyo contador es arrastrado por la turbina cuya marcha se quiere regularizar. El líquido va por E al tubo C, en el cual hay un órgano móvil que modifica automáticamente la seccion libre, de modo que transforma las variaciones de velocidad del contador en variaciones mui amplificadas de presion interna en el seno del líquido E.

De este modo, si se introduce un piston lastrado F en el referido líquido, al aumentar la presion del mismo, por aumento de velocidad de la turbina, es rechazada F hácia arriba i la cremallera G en que termina, engranando con el piñon H, hará bajar la cremallera K que hace bajar la compuerta L que da entrada al líquido de la turbina.

En D va un resorte metálico en hélice que da la presion conveniente a la varilla que sostiene el émbolo C, que se introduce mas o ménos, segun la velocidad del líquido cerrado, i que es el que produce el aumento o disminucion de presion en el líquido regulador.

En marcha normal, el contador movido por la turbina repele el líquido regulador que se escapa por $\mathcal C$ franqueando la seccion libre que queda en torno del obturador, con lo cual la parte móvil del hidro-taquímetro toma una posicion de equilibrio que es funcion del volúmen del líquido gastado, de la seccion del tubo $\mathcal C$ i de la tension del resorte $\mathcal D$. I se pueden disponer las dimensiones del aparato de tal suerte que con un réjimen de gasto medio, resultante de la velocidad ordinaria de la turbina, se produzcan en el circuito líquido cerrado variaciones de presion considerables que produzcan la regulacion de la velocidad de la turbina con la mas esquisita sensibilidad.

El regulador Ribourt puede adaptarse a cualquiera instalacion de turbinas existente.

La práctica a demostrado ya el buen partido que se saca del empleo de este aparato, pues, en la instalación de alumbrado eléctrico de la estación de Saint Sulpice Laurière (Francia) funciona uno para un salto de 50 metros, que da 120 caballos, con tal regularidad, que la corriente eléctrica producida no excede nunca de un volt. Para una turbina de poca potencia i con un salto de poca altura, las variaciones de velocidad no exceden de 1 a 2% de la velocidad en réjimen normal, aunque las variaciones de resitencia se eleven al 25 o 30% de la potencia máxima.

A pesar de la brillantez de estos resultados, aun son mejores los que se obtienen con una turbina de gran potencia receptora de la enerjía, que le comunica un salto de grande altura.

Fig. 8.— Aparato Courty para colocar o separar correas de trasmision.

Resulta sumamente peligrosa la práctica, tan corriente por desgracia, de montar las correas de trasmision a mano, pues la mayor parte de los accidentes graves del trabajo en las fábricas son debidos al manejo de las correas.

Sabido es que para correas lijeras se emplea un aparato sencillo que consiste en una varilla lijera i sólida que lleva en su estremo superior un dedo de hierro perpendicular a la varilla. Pero si las correas son mui anchas hai que hacer uso de aparatos especiales monta-correas a cuyo grupo pertenece el que vamos a describir i que representa nuestra figura.

Consiste en un tambor fijo m, de un diámetro inferior al de la polea, sostenido por los dos montantes a a' fijos a un muro lateral o a una parte metálica de la fábrica. En el borde mas alejado de la polea p va una corona móvil que lleva una garganta con la cadena c. Las palancas e sirven para llevar el sector g un poco inclinado hácia la polea p.

Si la correa está sobre el tambor m, se hace jirar s mediante la cadena o, con lo cual el sector g se coloca debajo de la correa, la levanta i la hace deslizar sobre la polea, gracias a su inclinacion i al reborde de que va provista. Una vez la correa

colocada, se vuelve enseguida el sector a la parte inferior de la polea.

Para quitar la correa durante la marcha, se tira de la cadena c' que rije la palanca q la cual hace caer la correa sobre el tambor por un mecanismo especial.

En Roubaix i en Tourcoing, donde hai instalacion de gran número de estos aparatos, dan magnífico resultado.

Fig. 9.—Telégrafo de Morse para aficionados.

El trasmisor de este telégrafo, inventado hace años por W. Hadden i cuya patente ha caducado ya, no requiere por parte del operador el conocimiento del Código de Morse, que todos conocemos. Como en este alfabeto cada letra viene representada por una combinacion de rayas i puntos, el manipulador está ya dispuesto de modo que con un solo movimiento se produzca la combinacion de corrientes de larga o de corta duracion correspondientes a dichas rayas i a dichos puntos. Al efecto, uno de los alambres conductores, que es en el aparato un alambre de cobre número 30, está como cosido en una tabla de caoba, recorriendo en toda su lonjitud una serie de surcos en cuya superficie saca puntos largos o cortos segun las rayas i puntos correspondientes a la letra escrita al lado sobre la tabla. El otro alambre es flexible i termina en una especie de raspador de acero destinado a ser movido con velocidad uni forme sobre los surcos. Se comprende que la corriente de una pila que forme circuito con ámbos alambres será de duraciones largas o cortas, segun la disposicion del alambre cosido en la tabla en el espacio de la letra que se recorre con el raspador.

Estas corrientes se reciben en un inscriptor de Morse, que en su forma mas sencilla se compone de una rueda-almacen en que hai arrollada la cinta de papel, de un tambor de madera J por el cual pasa la cinta i cuya garganta está cubierta con una tira de çaucho, de otro tambor forrado con un retazo de tubo de goma, sobre el cual apoya la plumilla o estilete movido por el electro, i de otro tambor B forrado del mismo modo i cuyo eje se prolonga en un freno de fuerza centrifuga G F, destinado a regular el movimiento de la tira de papel, causado por el peso de una poleita libre A.

Una palanquilla H, que se mueve con la armadura del electro i engrana con un dedo saliente del tambor J, cuando no pasa la corriente, dispara i para automáticamente la cinta al empezar i acabar la trasmision de un telegrama.

Todo aficionado un poco mañoso puede construirse con pocas herramientas i poco dinero un telégrafo de esta clase, que no por ser modesto deja de funcionar con regular perfeccion.

Fig. 10.—Nivel universal.

El ilustrado fabricante de licores don Juan Pascual nos dá a conocer el nivel universal de su invencion que utiliza en los aforos de sus calderas i toneles, del cual representan algunos detalles los adjuntos grabados. Dicho nivel sirve para toda clase de recipientes, sin necesidad de establecer tubos comunicantes al traves de las paredes de las vasijas cuyo nivel se quiere determinar.

El aparato empleado por el señor Pascual se reduce a un tubo vertical dos veces encorvado en \mathbf{U} , en una de cuyas curvas, cuyas ramas están graduadas, se ha colocado cierta cantidad de líquido hasta la altura e d. Tan pronto como se introduce en el recipiente la rama inferior g del aparato, se establece un desnivel e f entre las dos ramas esteriores, igual al g h entre la rama inferior del tubo i el líquido de la vasija. Es fácil formar una tabla de reduccion o graduar ya de una vez para todas las escalas de e i f para el supuesto de hacer llegar el tubo g hasta el fondo del recipiente. En caso necesario, seria tambien posible proveer la rama e de un ancho depósito, i graduar sólo la rama d f.

Como se comprende, el nivel ideado por el señor Pascual es sumamente práctico i de fácil manejo, i puede aplicarse aun a las calderas a presion, en las cuales bastaria comunicar la rama f con el gas a vapor comprimido para anular su efecto.

Ajencia de Construcciones i Reparaciones

FÁBRICA A VAPOR

Sto. DOMINGO, 1716 (Pasado Riquelme)

ENRIQUE ECHEVERRIA CAZZOTE

Casilla 1135

LA AJENCIA SE ENCARGA DE:

Construcciones i reparaciones de edificios i departamentos interiores.

Recibe órdenes para ejecutar en las casas trabajos de cualquier naturaleza, garantizando la buena ejecucion de estos.

LA FABRICA SE ENCARGA DE:

Trabajos de carpintentería en jeneral.

Instalacion i traslacion de Oficinas i Casas Comerciales.

Hace muebles corrientes i de fantasía.

Compone, transforma, barniza, pinta i tapiza toda clase de muebles. Recomienda sus entablados-encerados, IMITACION PARQUETS, que por su bajo precio, duracion e hijiene, reemplazan con ventaja al mejor alfombrado.

LLE 1

MECÁNICOS HERREROS

Calle Chacabuco, Núm. 258 - VALPARAISO - Teléfono ingles Núm. 1333 Especialistas en motores a gas, parafina i vapor HACEMOS TOBO TRABAJO DE HERRERIA I<u>"</u>CERRAJERIA

COLOCAMOS CAÑERIAS DE GAS I AGUA

RECIBIMOS TODO TRABAJO FINO

de ajuste para tornear HACEMOS ESTANQUES, FONDOS DE FIERRO i Todo Trabajo Concerniente al Ramo

a Precios Equitativos

Nes encargames de lustalaciones és toda clase de Maquinarias i Caferias a Vapor

PAPELERIA INGLESA

Casilla 717, Calle Condell Núm. 16 (Cerca Plaza Pinto) Teléfono 174 VALPARAISO

BUONO-CORE I DUPRÉ

IMPORTADORES DE PAPELES Pintados, Dorados i Lisos LINOLEUM para Pisos Escalas, etc. PELPUDOS, Arpillera, Lona ARTICULOS para Tapiceros, Barniza-dores, Carpinteros, Herreros LANZAS para Cortinas TRASPARENTES Automáticos todos

GLACIER para Vidrios, Id. Figuras MOLDURAS de Fantasia para Cuadros PINTURAS, Aceite, Aquarraz BROCHAS, Pinceles, Tierras ARTICULOS de Merceria, CUADROS al Oleo, Id. Acuarelas ORO EN HOJAS para Dorar COLDOSES de Lana i de Crin Ani-

SOMMIERES Metálicos

EJECUTAMOS:

Trabajos de pinturas artísticas de casas, iglesias, decoraciones, letreros, figuras, paisajes, estucos, refacciones de casas etc. — Trabajos de tapicería, colocacion de cortinas, trasparentes, linoleums, alfombras, menajes i mudanzas de casas.

DROGUERIA ESPANOLA

Valparaíso - 540 Victoria 540

F. BELLICIA

Establecimiento de primera clase

Importacion Constante de Europa i Estados Unidos

ALMACEN NACIONAL PEDRO BUSTOS 1450, MONEDA, 1450 - SANTIAGO Provisiones escojidas para familias. — Gran surtido en abarrotes.—Té, café i toda clase de artículos del país i estranjeros.

Seccion de Traducciones

Entre los miembros colaboradores de la revista EL ARTE INDUSTRIAL, se acordó abrir esta Seccion, en que se harán con exactitud i esmero toda clase de traducciones en los idiomas ingles, aleman, frances, italiano, etc. Los honorarios serán módicos

Dirijase la correspondendencia al Editor de EL ARTE INDUSTRIAL.

Seccion planos, presupuestos de edificacion, instalaciones de fábrica, etc., etc.

Es otro de los acuerdos de los señores colaboradores. Han acordado, pues, abrir tambien esta Seccion, que vendrá a prestar, no lo dudamos, grandes i útiles servicios a los propietarios e industriales.

Las personas que soliciten estos servicios serán inmediatamente atendidos por los señores injenieros i arquitectos con que cuenta nuestra Revista, por precios sumamente módicos.

La Revista de los Niños

Periódico Ilustrado de Actualidades

i Lecturas Infantiles

Número Suelto, diez centavos

Suscricion: (14 números) \$ 1

Direccion:

Administrador de la Revista de los Niños, Casilla 177 - Santiago

PIANOS

SIEMPRE LO MEJOR

C. KIRSINGER & CIA

ÚNICOS AJENTES DEL MEJOR TOCADOR DE PIANO

LA FONOLA

EL ARTE INDUSTRIAL

REVISTA MENSUAL ILUSTRADA

sobre las aplicaciones prácticas del dibujo en las industrias en jeneral, talleres, escuelas i hogares

Suscriciones: for un año \$ 5 — por seis meses \$ 3 — número suelto \$ 0,50

Toda correspondencia, suscriciones, pedidos de numeros sueltos, etc., etc., dirijanse al administrador de

El Arte Industrial, Imprenta Universitaria. Casilla 1770

Fábrica Nacional a Vapor

DE

SACOS DE PAPEL

TAIC

Maturana i Cáceres

23 GARCIA REYES 25 ----- CASILLA No. 670

SANTIAGO

IMPORTACION DIRECTA DE EUROPA

PAPELES DE PRIMERA CALIDAD

SASTRERIA

DE

Clodomiro Villarroel M.

INDEPENDENCIA, 389

(frente a Pinto)

SANTIAGO

ESPECIALIDAD EN CASIMIRES FINOS

PARA

TRAJES DE CABALLEROS I NIÑOS

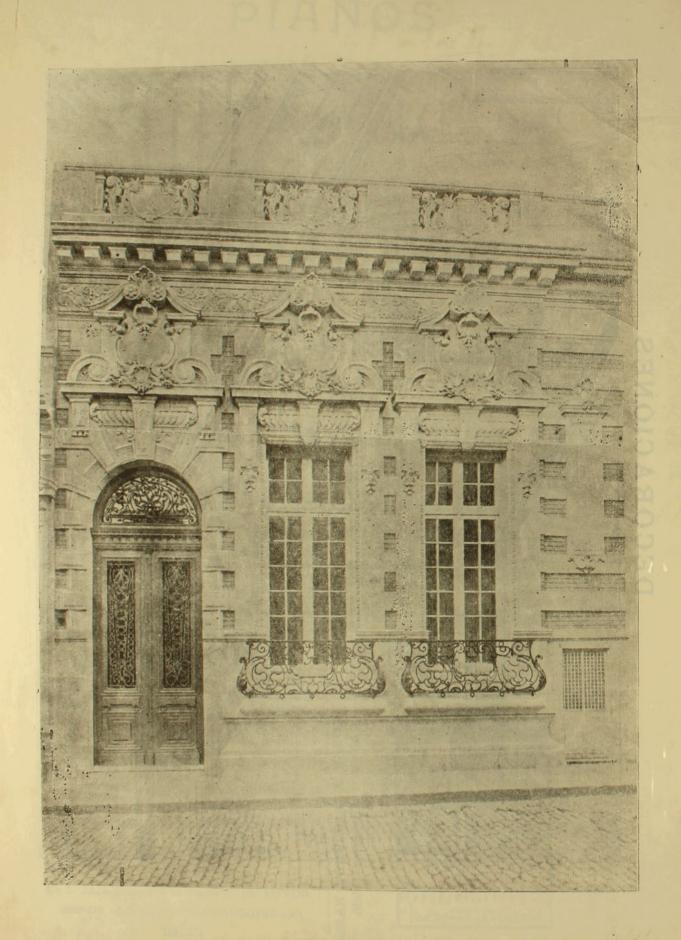
CORTE ELEGANTE I GARANTIDO
PUNTUALIDAD EN LA ENTREGA

BODEGA DE VINOS

DE CAUQUÉNES

Estos vinos por la calidad del terreno que los produce son los mas ricos en tanino natural que existen en Chile, siendo por consiguiente los vinos mas estomacales i cordiales por excelencia.

Debido a ello es la fama que tienen los vinos de Cauquénes desde que en Chile existe la viña.


En la única parte que se espenden por MAYOR i MENOR es en la AVENIDA O'HIGGINS 1261.

SANTIAGO

GRAN TORNERIA A VAPOR Molduras, recortes 1 calados finga casa escuesiva

1380, CONDOR, 138
ENTRE DUARTE I NATANIEL

DECORACIONES

El Arte Industrial

MANUEL TULAUD

REVISTA MENSUAL ILUSTRADA

R. TAPIA ROJAS

Año I

Santiago de Chile, 1.º de Agosto de 1905

N.º 4

A nuestros abonados i en especial a las sociedades obreras del país.

Dos palabras.

La pesada carga i gran responsabilidad que la Dirección de la Revista El Arte Industrial, se ha echado sobre sus hombros, i que ha sido solo por amor al progreso i bienestar de las clases obreras, son demasiado graves; pero la inquebrantable buena voluntad que desde un principio hemos puesto para salvar todos los obstaculos nos hará, no lo dudamos, salir triunfantes en beneficio de una de las obras mas grandes que llegan a su debido tiempo a enaltecer los pueblos, fuera de las fronteras del suelo patrio.

Obras de tal naturaleza debieran no solo ser mui bien miradas por los obreros todos, sino aceptadas i protejidas por todas las clases sociales i por los mandatarios del país en que aquéllas nacen, i mas cuando como El Arte Industrial, es la primera i única Revista en su jénero, que en Chile como en otras naciones civilizadas viene—persiguiendo el adelanto i progreso industrial i científico, comercial i artístico, no solo del obrero rudo, sino que tambien de todos los hombres intelijentes i capaces en las diversas esferas del trabajo diario del taller, de la industria, del arte, de la agricultura i del comercio.

Talvez se nos tache que los horizontes de nuestra Revista son mui estrechos, pero todos los principios son así: ningun maestro ha llegado de un golpe a ser maestro, sin haber ántes pasado por el aprendizaje del oficial. Las grandes revistas que nos llegan de Estados Unidos i de Europa han comenzado su vida casi en menor escala que nosotros, i mui pronto aquellas, al parecer raquíticas publicaciones, han llegado con el tiempo a editarse en gruesos ejemplares, llevando a todas partes los descubrimientos mas modernos de los sabios de todos los países i los conocimientos mas útiles al hombre.

Esto es lo que nosotros perseguimos, es lo que queremos hacer: traducir de todas aquellas grandes e importantes publicaciones que se editan en la mayoría de los países, en idiomas estranjeros, todo lo mejor, todo lo mas útil, todo lo mas valioso, todo aquello que signifique ilustrar i despertar de una vez por todas el estado en que hoi se encuentra el adormecido espíritu de la mayoría de las clases trabajadoras de la patria chilena.

Pero, desgraciadamente, este elevado espíritu patrio que nos guia ha sido por mui pocos comprendido. De 68 comunicaciones a sociedades que hemos dirijido, solo unas pocas han contestado a nuestro llamado. Sin embargo, esto no nos ha desalentado ni nos desalentará jamas, porque el que por un bien porfia, al fin i al cabo consigue ver realizados por el éxito sus elevados propósitos.

I mucho ménos nos desalentaremos cuando hemos tenido una voz de aplauso i aliento de hombres como don Agustin Edwards, del Intendente de Valparaíso, don Joaquin Fernández Blanco; de los diputados don Anjel Guarello, don Artemio Gutiérrez, don Malaquías Concha; i de los senadores don Federico Puga Borne, don Adolfo Eastman, don Pedro Bannen, i del director de la Escuela de Artes i Oficios, señor Puelma, i en fin de muchas otras distinguidas personalidades de nuestro mundo político i social.

Comprendan de una vez nuestras sociedades obreias que el ideal hermoso que persigue El Arte Industrial, está despojado de toda pasion político-relijiosa. Solo se desea para los actuales artesanos i para los futuros, que son sus hijos, su ilustracion, su bienestar, su adelanto progreso, para así poder romper el yugo con que hoi por hoi, i por desgracia, nos domina el elemento est tranjero.

Nuestros hijos tendrán así, al salir de las aulas de la escuela, la obra necesaria que, al llegar al taller, al preparar sus primeras herramientas del trabajo honrado, su compañera cariñosa, su ilustrada maestra que iluminará su intelijencia demostrandole con suma claridad i sencillez los mas árduos problemas que encierran los graves e incomprensibles, a veces, secretos de las Ciencias, Artes, Industrias, Oficios, etc., etc.

I entónces, sólo será cuando el artesano de la patria no doblegará su cerviz al maestro estranjero; entónces sólo será cuando el obrero chileno podrá probar que siendo educado e instruido, vale tánto o mucho mas que cualquier otro europeo.

Pero, volvemos a repetirlo, si las sociedades obreras no acuden a nuestros llamados, nuestra noble mision caminará lenta, pero no decaerá; si por el contrario, atienden nuestras súplicas, nuestra marcha sera rápida i así podremos llegar pronto a contemplar una de las obras con que se enorgulleceria cualquiera otra nacion civilizada i progresista.

Si de los 60 000 obreros que existen en el país, vinieran en nuestra protección sólo la sesta parte, entónces los actuales i futuros artesanos tendrian lleno de vigor a su órgano oficial, que es la Revista, quien, ademas de ilustrarlos, tiene también por justa misión velar por sus intereses todos, ménos aquellos que tengan relacion con la política o la relijion.

El arte decorativo a traves de los siglos.

(Continuacion)

La Grecia tributaria del Oriente no tuvo arte propio sino el el dia en que llegó a conquistar su independencia política come el coleta.

En los primisimos tiempos, segon las noticias que ham podido llegar hasta nosotros, la materia usada por los griegos en las construcciones arquitectónicas, así como en los inueblos isutensilios domésticos, era de infima clase, abundando la maderara. Hasta las estatuas de los Dioses eran talladas en madera-¡Cuán inmensa diferencia con los siglos posteriores!

Habiendo llegado a dominar políticamente todo el mundo entónces conocido, Grecia llevó las artes i las industrias artisticas a un grado tal de perfeccion que nunca fué superado.

En Homero hai descripciones que dan un concepto magnifico de la riqueza del material empleado en la confeccion i decoracion de tronos, tripodes, sillas i camas. Ya no es la madera que forma el esqueleto de estos muebles, sino el marfil i toda clase de metales preciosos. Pausania habla con entusiasmo de las bellezas artísticas encerradas en el tesoro de Holimpia. Lo que queda de los templos griegos sirve aun hoi en dia como

modelo de proporcion i severa elegancia i todo prueba la habilidad de esos incomparables artistas, producto de una civilizacion que tan luminoso rastro ha dejado en los siglos.

* *

Los romanos, herederos directos i continuadores de la civilización griega, llevaron a un grado altísimo el lujo del arte decorativo.

En la arquitectura siguieron los estilos de sus maestros, los griegos, pero en donde sobresalieron fué en la ornamentacion interior de los edificios i en la de los muebles i utensilios domésticos.

Las preciosas descripciones de Plinio (Senior) i las escavaciones que han vuelto a la luz Pompeya i Herculano nos permiten apreciar en su justo valor el arte decorativo de los romanos.

III

En la pintura mural es un esplendor el grado de perfeccion alcanzado por los Romanos: colorido vibrante i al mismo tiempo entonaciones armoniosas; en la disposicion de las lineas gran parsimonia de curvas evitando sin embargo toda dureza; en los detalles siempre el *vero*; perspectivas, flores, frutas, animales, paisajes, figuras, todo respira la vida, todo demuestra la suprema habilidad de un pincel maestro.

En la escultura en mármol, en piedras duras, en bronce o en maderas etc., han demostrado los romanos el altisimo aprecio en que tenian el estudio de la naturaleza; i, como los griegos, deben a este estudio el grado elevadísimo de perfeccion alcanzado por ellos en el arte.

Tambien el vidrio fué conocido i trabajado admirablemente por los romanos; i han llegado hasta nosotros estupendos modelos de joyería i orfebrería así mismo que lindisimos trabajos de cerámica. Sin duda tambien el arte de la ebanistería i del tallista tuvo que producir entre los romanos obras maestras, Plinio i Ciceron lo atestiguan; pero mui pocos modelos han llegado hasta nosotros. Las hordas barbaricas, las guerras, las revoluciones, los motines i las discordias intestinas que por tanto siglos asolaron a Italia, d'estruyeron todo lo que fué facilmente destructible, i nos privaron del gusto de admirar los escelentes productos de estas artes.

* *

El estilo romano, derivado del griego, tanto se le parece que muchas veces es mui dificil pronunciarse sobre el orijen verdadero de ciertos objetos. Esto es debido al hecho que Roma, cuando florecian las artes, estaba llena de artistas griegos espatriados voluntariamente o a la fuerza, que prestaban su obra para el embellecimiento de la capital del mundo i de las moradas de los señores del Universo.

Durante el Imperio empezó la decadencia del arte romano. Las grandes conquistas en Asia i en Africa, trajeron a Roma junto con inmensas riquezas, una estraordinaria depravacion del gusto. No mas la modesta i razionable ornamentacion, ni la parsimonia de los colores, sinó exuberancia de detalles al punto que en un marco, por ejemplo, no había una ságoma o una faja sin ornatos, lo que produce un efecto mui desagradable a la vista, pues el ojo quiere sus sitios de descanso. Auonde ántes había tintas bien armonizadas, pusieron oro, piedras preciosas, marfil etc., así que si todo esto conformaba el ojo del opulento Mecenate, sin embargo no era mas el arte sencillo i verdadero que habla al sentimiento.

Con las invasiones de tantos pueblos de diferentes razas que convulsionaron a toda Italia en los primeros siglos del cristianismo, se apagó aquella gran luz que había alumbrado todo el mundo entónces conocido: el Arte Helénico Romano desapareció, o mejor dicho se transformó.

* *

En las catacumbas de Roma i de otras ciudades adonde el Cristianismo ponía sus raíces, encuentranse pinturas i figuraciones que imitan todavía las ídeas paganas. Bizancio, que por un

largo período fué el centro del cristianismo, tuvo un arte que claramente acusa su provenencia de Roma pagana. Durante la permanencia de la sede del Imperio en Bizancio, especialmente bajo Constantino, esta ciudad brindó un seguro refujio a las obras de arte del pasado i a los artistas capaces de nuevas jeniales producciones. Cuando cayó el Imperio de Oriente bajo los golpes del Turco en t 453, ya era demasiado tarde para sepultar definitivamente la civilizacion romana, pues ya habia podido producirse un renacimiento en una parte de Europa que renovaba i continuaba las tradiciones artísticas i salvaba el mundo de la barbarie.

Electricidad

La Snerifa Eléctrica

Jeneradores i receptores de electricidad.—La electricidad se aprovecha casi esclusivamente como medio de la trasformacion de la enerjía. Unas industrias la quieren para producir luz, otras para obtener calor, aquéllas para determinar efectos químicos. Solo los médicos, quizá, emplean la electricidad como tal electricidad. En la mayoría de las aplicaciones restantes, la electricidad es un intermediario, aunque indudablemente mui ventajoso, para cambiar la forma de enerjía, haciéndola mas propia para las aplicaciones concretas de que en cada caso se trate.

Hai tres clases principales de *jeneradores eléctricos*. Los primeros, que se denominan *pilas hidroeléctricas*, *pilas primarias* o simplemente *pilas*, sirven para trasformar directamente la enerjía química en enerjía eléctrica; los segundos, que llevan el nombre de *pilas termoeléctricas*, son los que transforman inmediatamente la enerjía calorífica en enerjía eléctrica; la última clase de jeneradores, denominados *máquinas dinamo eléctricas* o simplemente *dinamos*, se utilizan para trasformar la enerjía mecánica en enerjía eléctrica.

Los receptores eléctricos admiten una clasificación análoga que los jeneradores. Son aparatos que sirven para trasformar la enerjía eléctrica que reciben en otra forma de enerjía, i pueden comprenderse dentro de una de las tres siguientes clases:

- 1.ª Receptores químicos, destinados a trasformar en enerjía química la enerjía eléctrica que a ellos llega.
- 2.ª Receptores térmicos, capaces de trasformar en calor la electricidad o enerjía eléctrica.
- 3.ª Receptores mecánicos o electro-motores, que, como su nombre indica, se utilizan para convertir en trabajo mecánico la enerjía eléctrica.

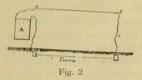
Algunos receptores son mui complejos i podrian comprenderse dentro de mas de una de las clases precedentes; pero la enumeración anterior es suficiente para formar concepto de toda las aplicaciones prácticas.

Hai aparatos eléctricos cuyo objeto es modificar la forma de la enerjía eléctrica, pero sin cambiarla en otro jénero de enerjía. Reciben electricidad i devuelven electricidad; pero esta última de una manera mas adecuada al fin práctico a que desea llegar. Tales aparatos se llamau trasformadores cuando su objeto esclusivo es el que se acaba de indicar; pero los acumuladores, de que se hablará mas adelante, así como algunas otras disposiciones eléctricas, constituyen verdaderos trasformadores.

Corriente eléctrica.—Aunque los fenómenos eléctricos son mui variados, hai un modo de ser de la electricidad que nos interesa particularmente.

(Fig. 1)

Supongamos que A (fig. 1) es un jenerador de electricidad de cualquiera de las tres clases indicadas en el párrafo anterior.

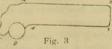

Pues bien, cuando este jenerador funciona, si unimos por medio de un alambre dos puntos especiales del jenerador, llamados *polos* del mismo, se manifiesta a lo largo del alambre un estado especial al que se da el nombre de *corriente eléctrica*.

Los dos *polos* de que acabamos de hablar se designan con los nombres de *polo positivo* i *polo negativo*, representándose respectivamente por los signos matemáticos + (mas) i — (ménos). Se admite que la corriente eléctrica es como un flujo etéreo o como una vibracion especial que marcha del polo positivo al polo negativo del jenerador.

Cuando se conoce cuál es el polo positivo i cuál es el polo negativo del jenerador, hai un medio sencillo de determinar esperimentalmente el sentido de la corriente eléctrica. En efecto, haciendo que el alambre por donde circule dicha corriente pase por encima de una aguja imantada, que pueda jirar libremente, el polo Norte de la aguja se desvia al Oeste cuando la corriente sigue la direccion Sur Norte. Ampère, para hacer mas fácil la recordacion de la lei que precede la anunció en estos términos, Supuesto personificado el alambre i que la corriente le entra por los pies i le sale por la cabeza, el polo Norte de la aguja imantada se desvia a la izquierda del hombre hipotético que la está mirando. El camino que sigue la corriente eléctrica se llama circuito cléctrico o simplemente circuito. El circuito es una línea cerrada i está formada de dos porciones: el circuito esterior, que está constituído por el alambre o conductor a b c, i el circuito interior que va desde el polo - al + pasando por el interior del jenerador.

La continuidad del circuito es condicion necesaria para que exista la corriente eléctrica. El circuito eléctrico debe estar formado por metales, cobre, hierro, etc.; por ser estas sustancias buenas conductoras de la electricidad. Pero, en algunos casos, otras materias le dejan paso. El agua, el aire húmedo, la tierra, etc., son buenos conductores de la corriente eléctrica.

En algunos casos parece que la corriente eléctrica exista, a pesar de no existir el circuito completo. Por ejemplo, en A



(fig. 2) hai un jenerador eléctrico; en *b* hai un aparato telegráfico i un solo alambre aéreo *a b* une ámbas estaciones, las que, merced a la electricidad, se comunican. Pues bien, en este caso el circuito eléctrico no deja de estar completo, pues está cerrado, sirviendo la tierra como *conductor de vuelta*, como espresa la figura con una línea de puntos.

Enerjia de la corriente eléctrica.—La corriente eléctrica se produce merced a la acción mecánica, química o térmica desarrollada en el jenerador. Cuanto mas enérjica es dicha acción, mas enerjía eléctrica se puede producir, si el jenerador de electricidad está bien combinado i debidamente construido.

La corriente eléctrica es como un flujo, una corriente material. Así como para medir la enerjía de una corriente de agua hemos de conocer el caudal i la diferencia del nivel, en la corriente eléctrica debemos conocer datos análogos; solo que el caudal de electricidad i la diferencia del nivel se llama diferencia de potencial entre los polos del jenerador.

La intensidad se mide en ampéres o amperios, unidad que definiremos luego. La diferencia de potencial, en volts o voltios, cuyo valor tambien indicaremos pronto. Así en la figura 3,

diremos que el jenerador D produce una corriente eléctrica que recorre el conductor a b c d, siendo la intensidad de la corriente de 80 amper i de 500 volts la diferencia de potencial entre los polos, bornes o terminales del jenerador.

La potencia de una corriente líquida es igual al caudal de

agua o cantidad que circula por segundo, multiplicado por la diferencia de nivel. I análogamente, la potencia de una corriente eléctrica es igual al producto de la intensidad I, por la diferencia de potencial ϵ . Así la potencia P de una corriente se espresará por

P=el.

Este producto debe medirse en volts o watts. Así la corriente citada ántes, de 80 amper a 500 volts, será capaz de desarrollar una potencia

P=80×500=40 000 volts.

Cada 1 000 volts componen la unidad llamada kilovatio; es decir, que la potencia dicha equivale a 40 kilovatios.

Esta potencia de la corriente eléctrica, entre dos puntos cualesquiera del circuito, puede trasformarse en enerjía mecánica, en enerjía química o en enerjía térmica, o en una combinacion de estos efectos.

El trabajo de la corriente eléctrica puede calcularse fácilmente sabiendo la potencia de éste. Se llama julio o joule al trabajo efectuado en un segundo por la corriente cuya potencia es de un volts. Así, en el caso anterior, diremos que la corriente de 80 ampers a 500 volts es capaz de desarrollar un trabajo de 40 000 julios por segundo.

Un julio equivale a 0,102 kilográmetros, es decir, aproximadamente la décima parte de 1 kilográmetro. De modo que, en el ejemplo anterior, la corriente supuesta es capaz de efectuar, aproximadamente, un trabajo de 4 000 kilográmetros por segundo.

Del mismo modo se puede reducir la potencia en volts a la espresion mecànica de caballos de vapor.

En efecto, i volts es igual a $\frac{1}{736}$ =0,00136 caballos de vapor. E inversamente, un caballo de vapor corresponde a 736 volts.

En el ejemplo anterior, pues, la potencia de 40 000 volts, corresponderá a la de

40 000×0,00136=54,40 caballos de vapor.

(Continuará).

Carpintería práctica.

Ensambladuras, empalmes i acoplamientos.

Tan importantes son las operaciones de que vamos a hablar en este capítulo, que podria mui bien definirse la carpintería diciendo que es el arte de encajar las maderas con arreglos a nuestras necesidades.

De tres maneras puede tener lugar el encuentro o union de dos piezas de madera:

- 1.ª Formando un ángulo, caso que se puede subdividir en otros tres, segun que el estremo de una de las piezas se apoye en la otra, ámbas se reunan por los estremos o se crucen las dos. Estas son las verdaderas ensambladuras.
- 2.ª Uniéndose las piezas por sus puntas, para quedar en prolongación una de otra; a lo cual denomínase *empalme*.
- 3.ª Uniéndose por sus cantos o tablas, es decir, ajustándose en sentido lonjitudinal; en cuyo caso la operacion recibe el nombre de acoplamiento.

Sin mas distincion que la que acabamos de establecer estos trabajos, i agrupándolos todos bajo el nombre jeneral de ensambladuras, vamos a describir, los diversos procedimientos para juntar las maderas que el carpintero está obligado a conocer.

Ensambladura de almohadon.—Es una variedad de la caja i espiga (o mortaja i espiga), que nos ocupará mas adelante, i se ejecuta dejando en el estremo de la caja una parte plena, que toma el nombre de espaldon, como puede verse en la lámina respectiva.

Fig. 1.—Ensambladura de almohadon.

La espiga se hace por el procedimiento ordinario (ya se verá cómo), pero la escopleadura de la horquilla es abreviada, dando dos cortes lonjitudinales para formar las quejeras, i se obtiene el almohadon haciendo saltar la madera con un corte diagonal.

Ensambladura de doble almohadon.—Se diferencia de la anterior en que tiene dobles espigas i muescas, por ser la madera mas gruesa, circunstancia que la hace mas resistente.

Fig. 2.—Ensambladura de encaje.

Ensambladura de cricaje. Consiste en una espiga practicada en un estremo de una de las piezas i un caja sin almohadon hecha en la punta de la otra, como se indica en la fig. 2.

Esta ensambladura, que es mui sólida, se usa, en jeneral, i se usa mucho para las piezas que han de ocupar una posicion vertical.

Fig. 3.—Ensambladura de silbato.

Ensambladura de silbato. —Se recurre a ella cuando se trata de unir dos piezas de madera en sentido lonjitudinal, i consiste en cortar los estremos de ámbas piezas en forma de pendiente, para adaptarlos uno a otro, afirmándolos por medio de clavijas de puntas.

Este ensamblaje o empalme no es aplicable sino cuando la obra ha de ocupar una posicion vertical.

Fig. 4.—Ensambladura de caja i espiga conocida con el nombre de encaje.

Ensambladuras de caja i espiga.—Es conocida por este nombre la que se ejecuta introduciendo en una escopleadura practicada en una pieza la espiga labrada, a sierra jeneralmente, en el estremo de otra. Las partes que se arrancan para formar la espiga, i tambien el bueco que dejan, llámanse quejeras.

La mas sencilla de las ensambladuras de caja i espiga es la que se conoce con el nombre de encaje, compuesta, como se ye en la fig. 4, de una caja practicada en el estremo del madero i una espiga que la atraviesa.

Esta ensambladura se emplea principalmente en los marcos de puertas i ventanas.

Vienen despues la ensambladura de almohadon i de doble almohadon, ya descritas, i en seguida la que se practica uniendo la punta de una pieza al centro de otra.

Esta se efectúa como la de almohadon, i es aplicable a los bastidores móviles.

Ensambladura de caja i espiga de inglete.—Consiste en la union de dos piezas de madera, una vertical i otra oblicua, en que la espiga es triangular, está cortada rectamente i tiene por espesor el tercio de la madera.

Fig. 5 - Ensambladura de rayo (corte oblicuo).

Ensambladura de rayo.—Es la union de dos tablas por sus puntas por medio de cortes rectos u oblicuos que encajan unos en otros con una llave que los afianza.

Representamos este ensamblaje, conocido tambien por el nombre de *empalme júpiter*, en las figuras 5 i 9.

Fig. 6.—Ensambladura de nuez.

Se emplea cuando se quieren juntar dos piezas por sus cantos i presenta una de ellas un rebajo cóncavo i la otra una superficie convexa para encajar en él.

Fig. 7. Ensambladura de doble inglete (de almohadon)

Ensambladura de doble inglete.—Es la union de dos piezas en cuyos estremos se hacen muescas que figuran salientes.

Fig. 8.—Ensambladura de doble silbato.

Ensambladura de doble silbato.—Mui sólida cuando está bien hecha. La reproducimos en la figura 8.

Fig. 9.—Ensambladura de rayo (corte de capricho).

Fig. 10.-Ensambladura de cola de milano.

Fig. 11.-Ensambladura de lengüeta.

Ensambladur a de lengüeta.—Se usa para unir las piezas por sus cantos. En la una se practica una ranura i en la otra se labra una lengüeta alargada que encaja en ella, como se ve en la figura 11.

Esta lengueta i esta ranura deben ser iguales, en lo posible, a la tercera parte del espesor de la madera; la ensambladura tendrá poca resistencia si la lengueta es demasiado delgada i no resistirá mucho, naturalmente, si las paredes de la ranura no tienen ciertos gruesos.

Cuando el espesor de la madera es demasiado grande, en lugar de una lengüeta se hacen dos, i dos ranuras por lo tanto.

Fig. 12.—Ensambladura de colas descubiertas.

Las de colas descubiertas es la que, como se observa en la figura 12, tiene estas colas visibles en ámbas partes de la obra.

Fig. 13.—Ensambladura flotante de inglete.

La reproducimos en la figura 13. Se la denomina de este modo porque una de sus partes, de inglete, como se vé, pasa a la otra parte, de escuadra, cual puédese mirar.

Fig. 14.—Ensambladura de doble avance de inglete.

Fig. 15.—Ensambladura de avance de inglete i de corte falso.

Cuando el travesaño, aunque ensamblado en medio del marco, no tiene molduras sino en un lado, el avance no se hace entónces mas que en un lado; el resto será a modo de corte falso.

(Continuará)

Construccion de escaleras.

Clasificacion.—Cuatro vienen a ser las principales divisiones que se imponen al tratar de clasificar las escaleras de madera: en primer lugar, estas pueden ser de mano o de construccion (movibles o fijas); las primeras se denominan, a su vez, segun como están hechas, simples, dobles o de tijera, de peldaños planos, de molinero i escalerillas; las escaleras de construccion o fijas pueden ser, por su parte, ordinarias o de servicio i principales, o de honor, designadas tambien con el nombre de monumentales; i, por último, así éstas como las ordinarias, se hacen rectas i curvas.

Sujetándonos a esta clasificación, vamos a hacer el estudio de esta importantísima rama de la carpinteria.

ESCALERAS DE MANO.—En princípio, todas ellas consisten en dos largueros o montantes en los cuales se ensamblan peldaños regularmente espaciados; mas, como dichos largueros pueden ser paralelos o diverjentes, la construcción de estas escaleras varía en razon de dicha disposición.

La conocida con el nombre de *simple*, cuyos montantes son paralelos, se compone de dos largueros de la anchura i espesor que los requiera la aplicación que haya de dárseles; en estos largueros están ensamblados, a unos 25 centímetros de distancia entre pieza i pieza unos barrotes de 4 a 5 centímetros de anchura por 204 de espesor, la distancia entre barrote i barrote será medida de la superficie del uno a la superficie del otro.

Se fijarán estos barrotes a los largueros por medio de clavijas, o bien hundiendo los estremos de las espigas a 15 o 20 milímetros de los bordes (en sentido lonjitudinal) e introduciendo en cada una de estas hendiduras una cuña de madera dura, que se encolará a continuacion.

La escalera de *tijera* o *doble* se compone de dos escaleras sencillas reunidas entre sí por su estremo superior i con dos herrajes especiales, como se ve en las figuras 1 i 2. Estos herrajes son conocidos con el nombre de *compas de escalera*.

La parte superior del herraje está cortada con sujecion a determinadas líneas, a fin de que la escalera no se abra mas de lo debido.

CARPINTERIA PRACTICA

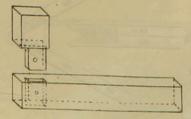


Fig. 1—En ambl dura de almohadon.

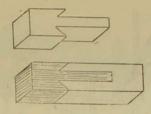


Fig. 2.-En ambladura de encaje,

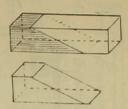


Fig. 3-Ensambladura de silbato.

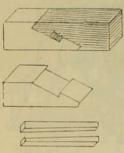


Fig. 5—Ensambladura de rayo (corte oblicuo)

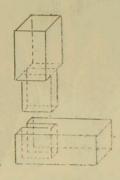


Fig. 4—Ensambiadura de caja i espiga c nocida con el nombre de encaje.

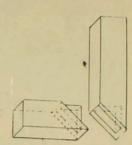


Fig. 7—Ensambladura de doble inglete (de almohadon).

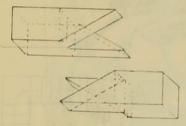
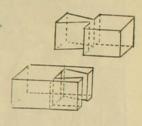



Fig. 8-Ensambladura de doble silbato.

Fig. 6—Ensambladura

l i . 10—Ensambladura de cola de milaco

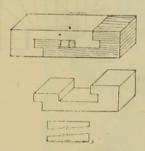


Fig. 9—Ensabladura de rayo (corte de capricho)

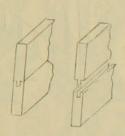


Fig. 11—Ensambladura de lengüeta.

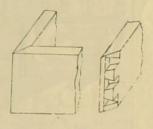


Fig. 12—Ensamoladura de colas descubiertas

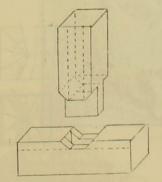


Fig. 14—Ensambladura de doble avance de inglete.

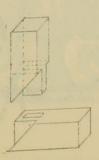
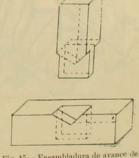
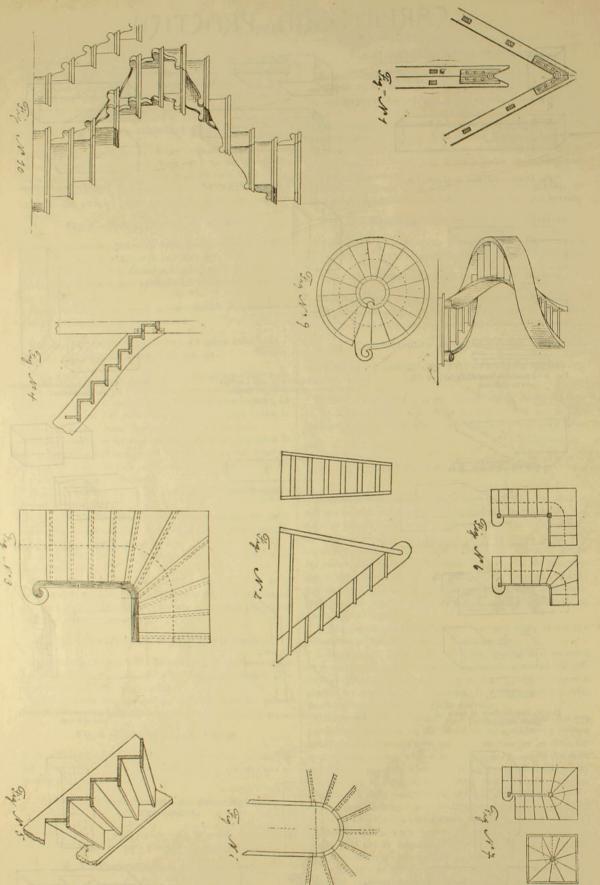
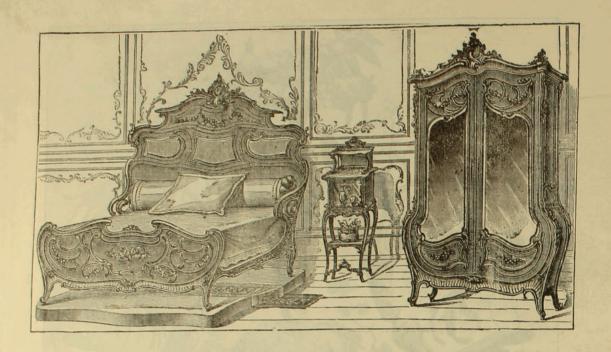


Fig. 13—Ensambladura flotante de inglete.


Fig. 15 —Ensambladura de avance de inglete de corte falso.

VARPINTERIA PRÁCTICA

La Fig. Nº 1 tómese por 1 i 2· la una representa una escalera de mano doble cerrada i la otra una id. abierta.—Fig. Nº 2. Escalerilla.—Fig. Nº 3. reliano.—Fig. Nº 7. Tómese por 1 i 2· la una representa un plano de escalera de dos vrelas sin relianos, i la otra un plano de escalera de columna.—Eng. Nº 6. Tómese por 1 i 2· la una representa un plano de escaleras de dos vrelas sin relianos, i la otra un plano de escalera de columna. derechos, —Fig. N.o 4. Ensambladura del pié de sectiona de vueltas con rellano, i la otra id. sin lera de caracol i plano de la misma.—Fig. 10.

Para construir esta clase de escaleras, de largueros diverjentes, se ha de recurrir a un trazado especial, con el fin de que los enrasamientos de los barrotes junten bien i para que en las mortajas de los montantes haya una pendiente tal que los barrotes queden en sentido rigurosamente horizontal una vez ensamblados i al ser abierta la escalera.

La de *peldaños planos* tiene los montantes mas largos que la anterior, de la cual se diferencia, por otra parte, en que no se compone de barrotes, sino de peldaños, los cuales están inclinados sobre los largueros en una medida igual a la inclinacion misma de estos largueros, para que al abrir la escalera estos peldaños ostenten una disposicion horizontal.

Los largueros reciben los peldaños en una mortaja, en la cual las espigas entran lo mas justas posibles, para evitar todo movimiento de los mismos dentro de la caja.

Las escaleras de molinero, llamadas así porque se usan mucho en los molinos, son de peldaños planos i mui fuertes, sus montantes son paralelos, i los peldaños mantiénense en ellos por recias espigas en las cuales se introducen cuñas de madera mui dura, que se encolan, para ajustarlas todo lo posible.

Las escalerillas, de cuatro o cinco peldanos, son de marco fijo i se trazan i construyen de ignal modo que las de escalones planos, en reemplazo de las cuales son usados cuando las alturas a que se ha de alcanzar lo permiten.

En la figura 3 representamos una escalerilla de seis peldaños, es decir, de las mas altas que se hacen, vista de perfil i de frente,

ESCALERAS DE CONSTRUCCION.—Pueden ser, ya lo dijimos ántes, monumentales u ordinarias, principales o de servicio; en las siguientes pájinas distinguirá el lector unas de otras; i por nuestra parte, vamos a ocuparnos de su trazado i construccion tomando su forma por punto de partida, pues, como tambien queda sentado, hai escaleras rectas i escaleras curvas.

Más, ántes de entrar de lleno en este trabajo, permitasenos decir, porque lo creemos necesario, sobre todo para el que tome nuestro trabajo no como obra de consulta, sino como catecismo del oficio del carpintero, de qué partes se compone una escalera i cuáles i cómo son todas esas partes, con el fin de evitar repeticiones i paréntesis en la marcha de la descripcion.

En primer lugar, el espacio que contiene la escalera denominase jaula de la escalera.

El pié, base de la obra, es una pieza de madera que soporta el estremo aislado de los peldaños, siendo en ocasiones aparente por su espesor i otras veces de forma de cremallera bajo los escalones, cuyo estremo es entónces contraperfilado.

El falso pié es una pieza en declive apoyada en la pared i destinada a recibir el estremo de los peldaños que no pueden ser empotrados o que se encuentran sobre un vacio.

Los rellanos son los puntos de detención de las escaleras

La rampa es esa serie interrumpida de peldaños que conduce de un rellano a otro.

Los contrapeldaños son las piezas que forman la delantera o frente de los peldaños.

CONSTRUCCION DE ESTAS ESCALERAS.—Para establecer una escalera (de servicio o principal, recta o curva), lo primero que que se ha de hacer es tomar exactamente la altura del hueco de que se dispone, sin hacer caso omiso de su espesor.

Trazado hasta en sus mas mínimos detalles este plano de la jaula, se dividirá su altura en tantas partes como escalones se tenga intencion de construir, sin olvidar que estos escalones no pueden tener ménos de 11 cm de altura, i en ningun caso mas de 19.

Establecida la altura de los escalones, en el plano de la jaula será marcada su anchura, el centro de la cual será la línea de diámetro sobre la cual será hecha la division del número de escalones que la rampa haya de tener. A continuacion se trazarán estos escalones en el plano, haciendo basilar los de los ángulos que se redondean siempré trazando un cuarto de círculo proporcionado al vacío de la vuelta.

Esto es en cuanto al procedimiento jeneral; hablemos ahora del método que puede ser aplicado especialmente a la construccion de cada una de las diversas clases de escaleras, para lo cual elejimos los casos siguientes, base de cuantos en la práctica se pueden presentar;

Primera serie.—Escaleras rectas.

A.—Escalera de piés rectos.

B.—Escalera de nuez.

C.—Escalera de columna

D.—Escalera de vuelta de escuadra con rellano de descanso.

Segunda serie. - Escaleras curvas.

A.—Escalera de caracol.

B.—Escalera de consolas

ESCALERA DE PIÉS RECTOS.—Es aquella en que todos los escalones son paralelos: en las vueltas se dispone una escalera mucho mas ancha, llamada rellano, que es igual a la anchura de la escalera. En las escaleras en que no puede haber rellanos en las vueltas, se hacen continuar los escalones, pero operando el baile o balanceo, operación cuyo objeto es hallar una reducción proporcional de cada uno de los escalones, que deben ser reducidos en su anchura para llegar a adaptarse a la forma de la vuelta; este balanceo se opera, pues, con el fin de hacer proporcional el estremo que reposa en el pié interior.

El balanceo, que determina una anchura proporcional entre los diversos escalones contenidos en la vuelta, permite ademas regular el canto superior e inferior del pié de una manera regular; lo que no podria obtenerse si los escalones se hallasen, por su parte, mal regulados. Examinese nuestra figura 4.

Los peldaños de la escalera de que hablamos suelen tener de 15 a 20 cm de altura i de 25 a 30 de anchura en el centro.

Al comenzar este capítulo dijimos de qué partes se compone una escalera; restábanos agregar, i con intencion lo dejamos de hacer por entónces, a fin de dar ahora la construccion completa de cada escalera, de qué modo aquellas piezas se ensamblan entre sí para dar un todo sólido i de bello aspecto.

El pié es una pieza de madera de 5 a 10 cm de espesor i cuya anchura es determinada por la de los peldaños; este pié, de encina, de abeto, de álamo a veces, se halla provisto de ranuras dispuestas segun su oblicuidad, i de tal modo que, cuando está fijo, las entalladuras de los peldaños son horizontales i las de los contra-peldaños verticales.

Como se ve en la figura 4, el pié es ensamblado en un montante o nuez, igualmente de madera, i de madera de la misma naturaleza que aquél.

Segun ántes sentamos, las cremalleras reciben el otro estremo de los escalones; como por lo jeneral no son sino aparentes, en su construcción suelen emplearse maderas defectuosas de 3 a 4 cm de espesor.

Las cremalleras, que suelen ser empotradas en la pared, son cortadas teniendo en cuenta el reverso de los peldaños i la cruz de los contra-peldaños; en la figura 6 damos, para que todo lo dicho sea mas comprensible, la disposicion de una escalera.

Los peldaños, ensamblados en el pié, son clavados con puntas en la cremallera; tambien pueden ser aplicados los tornillos; los contra-peldaños que se ensamblan, como es sabido, en el pié, i en una ranura que hai bajo la naris de la escalera, son asimismo clavados en las cremalleras con tornillos o con puntas.

El canto delantero del peldaño es moldeado a cuarto de círculo; esta moldura, que forma una saliente, es conocida con el nombre de naris de la escalera.

Inútil será advertir, a propósito de nuestra figura 4, que los peldaños que se pueden balancear mas o ménos, segun el gusto del arquitecto o del carpintero a cuyo cargo corre la obra.

ESCALERA DE VUELTA DE ESCUADRA CON RELLANO DE DESCANSO.—En ésta los dos piés interiores son ensamblados en un larguero que, descansando en tierra, mantiénelos en elevacion.

Cuando a la escalera de vuelta no quiere dársele rellano, el cual se determina como se ve en la figura 6, este rellano es reemplazado por escalones balanceados que dan la vuelta al larguero en que los piés se ensamblan, como se indica en la figura 7.

Puede tambien ocurrir que la escalera dé dos vueltas i no se desee recurrir al rellano.

En tal caso, los piés son ensamblados en los largueros el uno debajo del otro, de manera que en el plano se confundan en uno solo.

En esta escalera, todos los peldaños comprendidos en las dos vueltas son, como se ve, balanceados.

ESCALERA DE COLUMNA.- Representada, en plano, en nuestra figura 9.

Compónese esencialmente de una columna en la cual se ensamblan las escaleras.

Todos los peldaños son iguales en anchura i su frente radia hácia el centro de la columna, que se torna el centro del plano; los escalones se hallan dispuestos en derredor de la columna en forma de hélice regular.

ESCALERA DE NUEZ.—Los piés ensámblanse en ésta en una pieza de madera labrada en forma de nuez. Esta nuez puede ser mas o ménos desarrollada, segun el claro de la escalera. Cuando no es mui grande, hácese de una sola pieza, como se ve en la figura 10.

Los piés son ensamblados, cual queda dicho, en esta nuez, que descansa en el suelo i cuyo canto superior se une, despues de dar la vuelta, a la parte superior de dichos piés.

Cuando el claro es de gran tamaño, la nuez se hace de dos partes (no habria madera bastante fuerte para hacerla de una), labradas en forma de cuarto de círculo i reunidas entre sí por un pequeño pié intermedio; los piés ordinarios se ensamblan como en el primer caso.

(Continuará)

Mecánica.

Los motores animados.

El motor hombre.—Por esfuerzos que se hayan hecho para suplirle, el hombre ha sido, es i será el primer motor. La inmensa mayoría de los trabajos que se realizan sobre la haz de la tierra se hacen por el hombre; pero ya no por el hombre que guia una máquina, sino por el hombre que, manejando el útil con sus propias fuerzas, labra, cultiva, construye o destruye, recoje o disemina, hace, en fin, todo lo que la imperiosa lucha por la existencia le exije.

Goza el hombre, para realizar el trabajo, de una potencia mecánica de no despreciable importancia, de una fuerza capaz de vencer resistencias considerables, de una destreza—si el hábito o la instruccion la desarrollan—que le sirve de ayuda grande para ejecutar su labor; pero ademas de estas circunstancias físicas, posee sobre todo la aptitud suficiente para realizar los trabajos mas diversos, la intelijencia necesaria para dirijirlos, la fuerza de voluntad que es el primer fundamento para que puedan llevarse a buen término. Asombra el número de cosas diferentes que un hombre cualquiera hace en el trascurso de su vida, o de un solo dia, si se quiere. ¡Qué serie de movimientos diversos para atender a sus necesidades, para dedicarse a sus ocupaciones, para satisfacer los variados deseos que siente a cada paso¡ No hai máquina alguna que pueda comparársele; i la mas maravillosa de ellas, comparada con la

máquina humana, no es mas que un monstruo rutinario, moviendo siempre sus órganos del mismo modo, sin acertar a salirse de la pauta estrecha que le señaló su inventor.

Orijen de la enerjia mecànica del hombre.—El motor humano no puede sustraerse a la lei jeneral de que nadie ni nada puede dar lo que antes no recibiera; i así, para que el hombre constituya un ajente de trabajo, es preciso que la enerjia que consume i utiliza la haya recibido anteriormente en una u otra forma. Nos llevaria mui léjos de nuestro propósito tratar de la enerjia vital que en sí lleva el hombre al nacer, como propiedad de su cuerpo i de su alma; pero, presindiendo de esta enerjia, la que el hombre gasta a diario puede afirmarse que la recibe igualmente a diario en forma de alimentos.

El hombre es un motor que utiliza el calor desarrollado por la combustion de su sangre en los pulmones. Los alimentos asimilados se tranforman en sangre venosa; ésta se oxida en los pulmones merced al oxíjeno del aire atmosférico, i de este modo se producen calor, enerjía, trabajo.

Todo alimento asimilado es un manantial de calor para el organismo; i la química ha determinado qué cantidad de calor produce cada determinada cantidad de alimentos usuales. Para los efectos de este cálculo, bastaria indicar los principios inmediatos que sirven para la nutricion del cuerpo humano; principios que, per lo que a nuestro objeto corresponde, podemos limitar a los albuminoideos o proteídos, las grasas i los hidratos de carbono; pues respecto a los ácidos orgánicos i las sales minerales, su papel, aunque interesantísimo, no influye en las consideraciones que vamos a esponer,

El principal papel de la nutricion lo desempeñan los *albuminoideos o proteidos*. Se hallan compuestos estos principios, cuando ménos, de cuatro elementos primordiales, que son: carbono, nitrójeno, hidrójeno i oxíjeno, aparte de otros, como el azufre, el fósforo i el hierro, cuya presencia no deja de ser comun. Estos principios albuminoídeos o proteídos forman la mayor parte de la masa orgánica viviente, por lo que necesariamente han de constituir la parte fundamental de la nutricion.

Las grasas que integran el organismo son compuestas de carbono, hidrójeno i oxíjeno en los cuales el hidrójeno no está en proporcion suficiente para formar agua. Constituyen un gran manantial de calor en el organismo, pues por efecto de la respiracion se queman; orijinan el calor a que nos referimos.

Los hidratos de carbono forman la base de los amiláceos i azucarados, i son compuestos de carbono, hidrójeno i oxíjeno, hallándose estes dos últimos elementos en la proporcion necesaria para formar agua. No se conoce esactamente el papel de los hidratos de carbono en el organismo, si bien se tiene por cierto que sufren una combustion quizá despues de haberse convertido en grasas. Ahora bien, aunque no de un modo esacto se puede determinar, i se ha determinado, el calor que en el organismo puede producir cada clase de los elementos dichos. Así, FORSTER afirma que un gramo de grasa enjendra nueve, i un gramo de hidrato de carbono produce cuatro calorías.

Tambien se conoce la composicion de los alimentos que mas usualmente consume el hombre (véase la tabla adjunta) con cual dato, i sabiendo la cantidad de alimentos injeridos diariamente, es fácil deducir el número de calorías que el hombre puede producir durante veinticuatro horas.

Admitimos, por ejemplo, con MOLESCHOTT que la racion de trabajo moderado debe estar constituida del modo siguiente:

Elementos proteídos	130	gramos
Grasas	84	2
Hidratos de carbono	404	

Segun los datos ántes citados de FORSTER, el número de calorías que puede producir cada gramo de estos elementos de la nutricion es como sigue:

Principios inmediatos que forman parte de algunos alimentos usuales.

ALIMENTOS	PROPORCION POR CADA 100 GRAMOS				
	Proteídos	Grasas	Hidratos de carbono		
D	g	g	g		
Patatas	20	2	210		
Judías	293	18	557		
Garbanzos	138	18	507		
Arroz	70	5	770		
Aceite	70	884	30		
Fideos	89	H	700		
Café (infusion)	75	5	150		
Azúcar	75	5	938		
Carne	153	100	938		
Chorizos	137	794	938		
Tocino	114	751	938		
Manteca	2	900	938		
Bacalao	266,6	3	938		
Pan	50,6	5,2	375		

1 gramo de proteídos o albuminoídeos.. 4,5 calorías.

1 » de hidratos de carbon...... 4 »

Multiplicando estas cifras por el número de gramos de la racion de trabajo moderado, ántes citado, se tendrá el número total de calorías en la forma que se espresa:

Elementos proteídos 130 g
$$\times$$
4,5 cal = 585 calorías Grasa 84 g \times 9 cal = 756 $^{\circ}$ 9 Hidratos de carbono 404 g \times 4 cal = 1 616 $^{\circ}$ 9

Suma 2 957 calorías

o sea, en números redondos, unas 3 000 calorías diarias.

Trabajo total del motor humano.—De lo dicho se deduce que, en primer lugar, podemos asegurar que el hombre, como los demas motores animados, es una máquina capaz de trasformar la enerjía química encerrada en los alimentos en enerjía calorífica. Los músculos son, despues, los llamados a trasformar esa enerjía calorífica en trabajo mecánico. Veamos en qué cantidad se produce este trabajo.

Las 3 000 calorías producidas equivalen a 3 000×425= 1 275 000 kilográmetros, en virtud de la relacion, entre el calor i el trabajo.

Por lo tanto, el hombre produce en una u otra forma, mas de un millon de kilográmetros diarios de trabajo, lo cual revela que es, aun como máquina, de una composicion admirable. En efecto, veremos, por ejemplo, que 500 gramos de antracita pueden producir un trabajo de un *caballo hora*, esto es 75 kilográmetros durante 3 600 segundos, o sea en total 75 × 3 600 = 270 000 kilográmetros. Con poco mas de los 500 gramos de alimento el hombre puede producir un trabajo total cinco veces mayor.

¿En que se invierte el trabajo total que realiza la máquina humana? No todo, por cierto, en trabajo mecánico esterior utilizable. De la cifra total de un millon o mas, de kilográmetros, el trabajo mental absorbe una cantidad considerable i lo mismo el del sistema nervioso en jeneral, siendo ámbos trabajos imposibles de medir dentro del estado actual de las ciencias. El trabajo diario del corazon se avalúa en unos 75 000, siendo tambien grandes aunque imposibles de medir, el trabajo del aparato dijestivo i el que se necesita para que el organismo realice las mil variadas funciones que constantemente está desempeñando.

Resulta así, pues, que el hombre mas perezoso del mundo ejecuta, sin darse cuenta de ello, una enorme cantidad de trabajo diario, sólo para realizar la tarea de vivir, que es sin duda alguna la que absorbe la mayor parte de la enerjía que desarrolla el organismo.

Una pequeña parte del trabajo total que realiza el hombre se manifiesta en actos mecánicos esteriores. Esta parte la avalúan algnnos autores en 300 000 kilográmetros; otros en poco mas de 100 000 kilográmetros.

Aun aceptando para valor del trabajo esterior total la cifra de 200 000 kilográmetros diarios, resulta que esta cantidad solo es la quinta parte del millon de kilográmetros a que hemos dicho que ascendia la enerjía total desarrollada por el organismo.

En la cifra de 200 000 kilográmetros que a eptamos como representativa del trabajo esterior, se comprenden todos los movimientos que ejecuta el hombre; pero no todos estos movimientos representan un trabajo mecánico utilizable, pues, por ejemplo, cuando el hombre pasea, cuando levanta una silla, cuando alza la mano para rascarse, cuando sube la escalera de su casa, consume una enerjía mecánica que, sin embargo, no representa un trabajo utilizable.

Potencia mecánica del hombre.—Es difícil medir todos los trabajos que el hombre puede realizar. Pondremos algunos ejemplos, para que pueda verse la marcha que puede seguirse al estudiar algunos casos concretos. Supongamos un hombre que pesa 70 kilógramos i sube, sin carga alguna, hasta un cuarto piso de 20 metros de altura sobre el nivel de la calle. Ejecutará un trabajo total de

70 Kg
$$\times$$
 20 m = 1 400 Kgm

Imajinemos que esta escalera la ha subido el hombre de nuestro ejemplo, perseguido por unos criminales, de modo que la ascencion la ha hecho en cuarenta segundos. La potencia, en caballos de vapor, que ha desarrollado en este caso el motor-hombre, se calculará, dividiendo el número de kilográmetros, 1 400 por 75 (número de kilográmetros por segundo a que equivale el caballo) i por 40 (el número de segundos que ha durado el trabajo del hombre). Es decir, que la potencia desarrollada por el hombre, en el caso supuesto, seria

$$P = \frac{1400}{75 \times 40} = 0,46 \text{ caballos de vapor}$$

Otro ejemplo.—Supongamos un jimnasta que pesa 75 kilógramos, i que, en uno de sus ejercicios, da un salto tal, que su centro de gravedad (punto que se halla, en el hombre, hácia la rejion del abdómen) se eleve verticalmente del suelo un metro, i que esta elevacion se haya realizado precisamente en un segundo. Resultará, pues, que este hombre habrá desarrollado, en un segundo, el trabajo necesario para elevar 75 kilógramos a la altura de un metro; i como esto es precisamente la potencia de un caballo de vapor, podremos decir que aquel jimnasta ha desarrollado la citada potencia.

¿Quiere decir esto que el hombre sea capaz de hacer tales esfuerzos? Momentáncamente, st. El hombre puede hacer, durante certos instantes, esfuerzos colosales, como el de subir casi volando una escalera, como el de elevarse de un salto a mas de un metro de altura. Pero no puede sostener esta potencia durante mucho tiempo sin caer materialmente rendido.

Importa, pues, en la práctica, mas que conocer la potencia máxima que el hombre puede desarrollar en un momento dado, averiguar la potencia normal del hombre durante la jornada, o bien el trabajo total que puede efectuar durante tal o cual número de horas de trabajo diario.

Se admite que, cuando el hombre utiliza mejor el esfuerzo que desarrolla, es al llevar su propio peso sobre una rampa suave o una escalera. Siendo K el esfuerzo hecho, o peso elevado, en kilógramos, V la velocidad del movimiento de traslacion i T el tiempo en segundos, que ha durado el trabajo, se tiene que el trabajo total es KVT kilográmetros.

Este producto tiene un máximo, que depende de la naturaleza de cada hombre i de la clase de esfuerzo que realiza. Este maximo corresponde a su valor de K, V i T normales.

Pero, momentáneamente, el hombre puede salirse de los límites de estas cifras normales, i hacer un esfuerzo K' que sea de 5 a 6 veces mayor que el promedio K; o hacer un esfuerzo menor, con una velocidad V' 4 o 6 veces mayor que la normal V, o ejecutarlo durante un tiempo T, de 2 a 3 veces mas grande que el usual T.

Maquinas frigorificas.

(Continuacion)

La llave R, puesta entre el condensador i el refrijerante en el cañon de union de estos dos aparatos, regula el pasaje del fluido condensado del uno al otro lado. La construcción del refrijerante está basado en los mismos principios de los del condensador, es decir, tiene serpentines i un ajitador para el agua salada que baña estos serpentines, en lugar del agua dulce que baña al condensador.

2. Propiedades de los principales gases liquefiables empleados en las máquinas de hielo.—Hemos visto que cuatro cuerpos intermediarios, el amoníaco (NH_a), el anhidrido carbónico (CO_a), anhidrido sulfuroso (SO_a) i por último el agua (H_aO), tienen aplicacion en la produccion de frio en las máquinas consideradas mas arriba.

A baja temperatura, estos cuerpos absorben una cierta cantidad de calor i lo abandonan a una alta temperatura con el agua de condensacion i que aumenta con el calor equivalente al trabajo mecánico consumido por la máquina.

Nos vemos obligados, ántes de pasar al estudio a fondo de las máquinas de hielo i de su funcionamiento, a fijar rápidamente las propiedades de los principales gases liquefiables utilizados. Aunque este punto ha sido mui discutido entre los principales constructores de máquinas de hielo, nos permitimos dar nuestra opinion que nace de la propia esperiencia en el uso de máquinas para la produccion del frio artificial.

Para determinar la fuerza frigorifica de un cuerpo es suficiente conocer dos cantidades: el número de calorías necesarias para elevar la temperatura de 1 Kg de un liquido cualquiera de 0º a 1º sobre cero, i el calor latente de evaporacion, es decir, el número de calorías que hai que producir para volatilizar la misma cantidad de este liquido. Este último valor varia en senido inverso de la temperatura i se anula en el momento en que el cuerpo llega a su punto crítico, en que la diferencia de temperatura no se distingue entre el liquido i el vapor, i que por poco mas que se levante dicha temperatura no se puede provocar la liquefacion.

Estas son cantidades, como se ha visto, determinadas para diferentes temperaturas i un gran número de cuerpos, permiten fijar inmediatamente la cantidad de frio producido por kilógramo del cuerpo utilizado para la refrijeración desde que se conoce la temperatura de este último ántes i despues de pasar por el órgano indispensable llamado regulador de espansion i comum a toda clase de máquinas frigorificas a gas liquefiable. En efecto, se puede determinar con bastante aproximación esta cantidad, restando del calor latente de evaporación correspondiente a la temperatura del refrijerante, la diferencia de los calores del liquido por la temperatura a la entrada i a la salida del evaporador: esta diferencia es la cantidad de calor que ha absorbido el refrijerante.

El cuadro I nos da los valores correspondientes a estas dos cantidades para varias temperaturas.

CUADRO I

Temperatura en	CALOR LATESTE ES CALORIAS, POR EZ				CYLOR DEL	Lightno en c	ALORIAS, POR	Kg
grades C	NHa	CO ₂	SO ₂	H±O	NHa	CO ₂	801	H ₂ O
-10°	322,3	61,47	93,44	614	- 8,83	- 5	- 3,16	-10
00	316,1	55,45	91,20	607	0	0	0	
+10°	308,6	47,74	88,29	660	+ 9,17	+ 5,71	+ 3,28	+10
+20°	299,9	36,93	84,70	593	+18,66	+12,82	+ 6.68	+20
+30°	289,7	15,-	80,44	585	+28,49	+25,25	+10,19	

Estudiando este cuadro de valores se ve que la disminucion de potencia frigorifica debida a la absorcion del refrijerante, de una parte del calor del liquido, es mui poca para el agua, un poco mas para el amoniaco i anhidrido sulfuroso i mui considerable para el anhidrido carbónico. Sin embargo, aunque se ve que el agua podria ser el mejor intermediario, en las máquinas por compresion no se usa jamas: el anhidrido carbónico se usa en menos escala que el anhidrido sulfuroso i el amoniaco. Estos dos últimos gases tienden a desarrollar su uso enormemente puestos en actividad por los constructores de los nuevos sistemas de maquinas frigorificas.

Una esplicación mas o menos suficiente de esta aparente anomalia nos presenta el estudio de las tensiones de éstos cuerpos a las temperaturas indicadas en el cuadro II (1) i los espacios que ellos ocuparian a las mismas temperaturas, bajo la forma de vapores saturados secos. Este último factor con el poder frigorifico concurren a fijar las dimensiones del compresor.

CUADRO II

-	TEXNOS ABSOLUTA DA Eg POR cm2				VOLUM	EN DE 1 Kg	Kg ESPRESADO EN mª		
TEMPERATURA	NHs	COs	802	H±O	NHa	CO ₂	SO ₂	H±O	
-10°	2,92	27,1	1,037	0,0028	0,432	0,0143	0,329	451,42	
02	4,35	35,1	1,244	0,0060	0,298	0,0104	0,211	210,68	
+10°	6,27	45,7	2,338	0,0121	0,211	0,0075	0,152	108,52	
+20°	8,79	58,1	3,347	0,0229	0,154	0,0052	0,107	58,73	
+30°	12,01	73,1	4,666	0,0415	0,114	0,0030	0,076	33,27	

Con la ayuda de estos cuadros es fácil conocer i comparar la fuerza frigorífica i las dimensiones de una máquina que funcione con cualquiera de los cuerpos intermediarios ya nombrados, conocien lo las temperaturas, como se ha dicho, a la entrada i a la salida del regulador o evaporador, del fluido intermediario.

Para aplicar los datos a un ejemplo i precisar al mismo tiempo el efecto de este enfriamiento despues de la condensacion, vamos a presentar cuadros que nos muestren los valores que nos interesan, para dos casos diferentes.

Supongamos, en los dos casos temperaturas idênticas, al refrijerante -10° i al condensador + 20°: en el primer caso el fluido liquidado llega con esta última temperatura al evaporador, mientras que en el segundo caso se ha enfriado previamente hasta + 10°.

Los resultados están espuestos en el cuadro III que da el poder frigorífico de los cuatro cuerpos intermediarios por kilógramo. Se encontrará ahí, ademas, la cantidad de cada uno de estos cuerpos necesaria para producir 100 000 frigorías por hora a la temperatura—10° del refrijerante, i en fin, el volúmen de gas que atraviesa el compresor en una hora, volúmen que se obtiene multíplicando el número de kilógramos, previamente determinados, por los volúmenes correspondientes indicados en el cuadro II.

CUADRO III

TEMPLEATURA ANTEN DEL VAPORIZADOR	+20			100	+1	0°		
Cuerpos intermediarios	NHs	CO2	S02	HeO	NHa	COz	SOz	HrO
Tension en el refrije- rante en Kg por em?	2.92	27.1	1,087	0,0028	2,92	27,1	1,037	0,0028
Tension en el conden- sador en Eg por cui?	879	55.1	3,347	0,0229	8,79	58,1	3,347	0,0229
Calor latente de vapo- rizacion en el refrije- rante, en calorias	390.3	61.47	93,11	614	J 322,3	61.47	98,44	614
Calor del liquido en el refrijerante, en calo- rias	27.5	17.82	9.84	20	18,0	10.71	6,44	200
Efecto frigorifico por Kg en calorias	294,8	44,60	83,60	584	801,3	50,76	87,0	594
Cantidad necesaria para una producción de 100 000 frigorias en Kg, mas o menos		2:00	1 200	172	029	1 970	1 150	168
Volúmen en mª del gas aspirado por el com presor en 1 hora pars una produccion de								
100 000 calorias, mas o ménos	146	82,8	394	77.800	142	27,2	378	76 000

(1) Tomado de la Technische Thermo-dinamik

Se deduce inmediatamente de este cuadro que el volúmen de gas que atraviesa el condensador en un tiempo dado, i por un efecto frigorífico determinado (en este caso 100 000 frigorías por hora) es mui reducido para el anhidrido carbónico, aumenta sensiblemente si se emplea amoniaco o anhidrido sulfuroso, i exijiria por último, si tuvieramos que usar el agua como in termediario, un compresor de dimensiones exajeradas.

Como ya se ha dicho, en las máquinas que funcionan con aire, las resistencias pasivas serian aquí considerables, i destruirian enteramente las ventajas que se podrían esperar al elejir el agua como intermediario. Ademas, las tensiones estraordinariamente débiles (vacío considerable) seria, por la interrupcion del aire en la máquina, un peligro constante.

Estas razones bastan para abandonar toda tentativa de utilizar el agua a manera de gas liquefiable.

(Continuará)

Manual del tornero.

(Continuacion)

CAPITULO PRIMERO

NOCIONES JENERALES

Hemos dicho en la INTRODUCCION, i lo repetimos ahora, que no hai materia, por dura que sea, imposible de ser torneada. -No es esto decir, en iéndase bien, que toda sustancia se puede trabajar en el torno. Ina materia terrosa, deleznable, sin agregacion ninguna entre sus partes constitutivas, sometida al torno, se deshará completamente al menor esfuerzo. Otras materias duras, cristalizadas, saltan en pedazos i se rompen i quiebran con facilidad suma. I esto demuestra que, una de las cosas que se ha de estudiar en cada sustancia, es la estructura propia, el modo de ser o de presentarse en la naturaleza que cada materia tiene i que constituye una de sus propiedades características.-Debemos advertir que, esos mismos cuerpos, terrosos o cristalizados, que nos han servido de ejemplo, pueden, en ciertas condiciones, ser sometidos al torno; las primeras, amasadas con otras sustancias que les den consistencia; las segundas, tallándolas segun la direccion de sus planos, o valiéndose de procedimientos especiales para impedir que su frajilidad se manifieste.

Sea como quiera, la primera gran division que entre los cuerpos de la naturaleza puede hacerse, i se hace, por ser lójica, es la siguiente: sólidos, líquidos i gaseosos. No hai cuerpo ninguno que pueda escapar a esta clasificacion, pues el estado esferoidal, de que hablan los físicos, no es en realidad un estado completamente aparte de los tres anteriores, i el estado de la materia difusa, puede considerarse, sin riesgo, como una exajeración del gaseoso.

Claro está que de los líquidos i de los gases no tenemos para qué tratar aquí.—Quedan tan sólo los cuerpos sólidos, que se presentan en masas de varios tamaños i de diversa estructura.

—Unos son duros, pero quebradizos, otros demasiado deleznables; éste consistente i de grano fino e igual, aquel fibroso, el de mas allá laminar, como la pizarra o el talco. Los hai que tienen color uniforme i bien determinado, i otros cuyas tintas son vagas o antiestéticas. Algunos ostentan vetas de variados matices, otros granos coloreados de hermoso aspecto. Todos estos defectos i cualidades analiza el hombre i de todo saca partido. El cuerpo que no sirva para una cosa, sirve para otra; mas, para dar a cada uno su empleo propio i adecuado, se hace necesario estudiar cuidadosamente aquellas diversas cualidades, siendo éste, en nuestra humilde opinion, el primer estudio que debe hacer el artífice tornero.

Ya hemos visto cuál es la clasificación que el físico hace de los cuerpos de la naturaleza. El naturalista, a su vez, los distribuye en dos grupos mui distintos, a saber: inorgánicos i organizados, o, si se quiere, seres sin vida i seres vivos. De los se-

gundos, dicho se está, miéntras estén vivos, no hablaremos. Entre les primeros hemos de adoptar nosotros una nueva clasificacion, porque facilita su estudio. Los dividiremos, pues, segun su procedencia; segun hayan pertenecido o nó a los cuerpos organizados, adoptando la clasificación que los naturalistas hacen de trea reinos en la naturaleza, que son: mineral, animal i vejetal.

Del reino mineral utiliza el tornero, en primer término, los metales, i luego otros cuerpos, como el mármol, el jaspe, etc.

Del reino animal saca partido de ciertos productos, tales como el nácar, el cuerno, el hueso, el marfil, el carei i la ballena.

Del reino vejetal, en fin, aprovecha las maderas, cuya variedad de colores i estructura es inmensa, i algunos otros productos como el coco i el marfil vejetal que presentan ciertas cualidades mui recomendables.

Estudiaremos sucesivamente estos tres grupos en el órden indicado, dando a cada uno la estensión que nos parece mas adecuada, segun su importancia.

(Continuará)

Recetas industriales.

Zincado i latonado galvánicos.

El zinc tiene la propiedad de precipitar el cobre, la plata, el plomo, etc., de sus disoluciones, pues en contacto con el hierro, le preserva de su oxidacion, propiedad preciosa que se utiliza para elaborar los objetos galvanizados. Para ello se toma una disolucion neutra de sulfato de zinc, de 1,2 de densidad, i se emplea como electrolito con una corriente de 200 a 700 amperes por metro cuadrado de superficie del hierro galvanizable: el hierro empleado como catodo se recubre de zinc.

Para el latonado galvánico, esto es, para obtener por la electrolisis un depósito de laton, que es una mezcla de zinc i cobre, sobre cobre, hierro, acero, etc., se emplea el procedimiento Boettger, que consiste en preparar una solucion en caliente que contenga:

Sulfato de cobre	4.31 g
Sulfato de zinc	30,17 >
Cloruro potásico	43,10 >
Agua	I litro.

Se toma una placa de laton como anodo i el objeto que se quiere latonar como catodo, obteniéndose sobre el hermosas capas de laton, que tienen mucha resistencia.

Modo de colorear en negro los objetos de plata.

Hoi dia están mui de moda los objetos de plata oxidada o galvanizada, esto es, recubiertos de una capa negra que se produce por medio del azufre o del cloro.

Para obtener la capa de color negro-azulado que produce el azufre, se introducen los objetos de plata en una disolución de sulfuro potásico durante unas horas, lavando despues i pulimentando la superficie.

El cloro comunica a los objetos de plata un color pardo, que se consigue introduciéndolos en una disolución de sulfato cúprico i sal amoniaco (cloruro amónico) en agua.

Color para madera

El siguiente color da a la madera una superficie parecida al esmalte i en disposicion de recibir una pintura ulterior, ademas es ménos cara i mas secante que el blanco de cerusa, comunmente empleando:

Grafito lavado	7	5 Kg
Ocre lavado	73	
Cal lavada	16	5 2
Litariirio		2 3
C. Ifara do zine		2 4

Mézclanse estos ingredientes finamente pulverizados i despues se les añade trementina i aceite cocido, de modo que formen una sustancia espesa i homojénea. Se prepara primero la madera con aceite i despues se aplica con el cepillo la indicada sustancia. Es secante hasta el punto que permite la aplicacion de tres o cuatro capas en 24 horas, lo que, por regla jeneral, es suficiente. Por fin, se pule con piedra pómez i agua, limaduras de acero i agua o carborundum i agua, segun las circunstancias. Puede pulimentarse mui rápidamente, quedando la superficie mui lisa i dispuesta para recibir las diferentes pinturas i barnices.

Papel trasparente.

Cuando se quiera preparar papel trasparente para calcar, se toma el papel ordinario para escribir i se introduce en un baño de bencina, se saca i se recubre de un barniz que impida se evapore la bencina, para lo cual es preciso que ese barniz se seque mui rápidamente.

La composición mas conveniente para el referido barniz, es la siguiente:

Aceite de linaza hervido i decolorado	200	g	
Torneaduras de plomo	10	3	
Oxido de zinc	50	30	
Trementina de Venecia	5	3	

Se mezclan esas sustancias i se hacen hervir durante ocho horas, se deja enfriar, se ajita i se añade:

Resina copal l	olanca	50	g
Goma sandara	ca	5	>

En dicha mezcla se sumerje el papel al sacarlo de la bencina,

Barniz para papel aislador de la electricidad

Basta disolver una parte de bâlsamo del Canadá en dos partes de esencia de trementina, dijeriendo la solucion a un calor suave i filtrando en caliente.

Pinturas luminosas

Pintura amarilla.—Barniz 25 partes; sulfato de bario, 5; cromato de bario, 4; súlfuro de calcio, 17.

Pintura asul.—Barniz 42 partes, sulfato de bario, 10,2; ultramar, 6,4; asul de cobalto, 5,4; súlfuro de calcio, 46.

Tinta roja para marcar la ropa

Se bate una clara de huevo, se filtra al traves de un lienzo fino i se mezçla con vermellon o cinabrio pulverizado.

Esta tinta se utiliza con una pluma ordinaria de acero sobre la ropa, i una vez secos los caractéres se pasa una plancha caliente que coagule la albúmina i fije el vermellon sobre el tejido.

Esta tinta resiste al jabon i a los ácidos.

Dos procedimientos para ablandar el marfil

A este efecto basta solamente poner el marfil en mostaza molida i mezclada con vinagre fuerte, dejándolo en ella mas o ménos tiempo, segun el grueso de la pieza que se trata de ablandar. El marfil se vuelve en poco tiempo tan manejable como el pergamino, sin peligro de que se agriete i capaz de recibir la forma que se le quiera dar; cuando se le ha dado la forma que se desee, se endurece i vuelve a tomar su primera solidez a medida que se evapora la humedad de que está embebido.

El otro procedimiento consiste en tomar 90 gramos de espíritu de nitro i 450 de vino blanco o de vinagre, o de agua comun; se pone en esta composicion el marfil hasta que se hinche i se ponga blando, lo que sucederá a los tres o cuatro dias.

FOLLETIN

ARTE DE PINTAR

COLORES PARA EL FRESCO

Estos se molerán de la misma manera, pero solo en agua pura; luego se aclararán con un poco de goma arábiga en cantidad proporcionada al color i que no sea mui pegajosa, i en los colores gomosos mucho ménos cantidad todavía: algunos en estas pinturas no emplean mas que agua pura, pero nosotros somos de parecer de echar algo de goma, pues da brillo a la pared i doble realce a la pintura.

PINTURA AL TEMPLE

En ésta se disuelven los colores en agua-cola, goma o lo que se tenga a la mano semejante; pero, nosotros aquí solo hablaremos de la hecha con agua-cola, i cada uno luego hará lo que quiera.

Hecha el agua-cola con los retales de pergamino, baldés, etc., i de consistencia de jelatina cuando se queda en frio, se molerán los colores de la misma manera dicha, pero se disolverán con esta agua-cola un poco caliente, poniéndolos despues de molidos en el grado de consistencia que sea oportuno: en seguida se pasará a pintar los objetos destinados, siendo los preferidos en esta clase de pinturas, lienzos, tapices, teatros, decoraciones i todos los objetos que no tengan mucho roce ni reciban humeda des.

PINTURA AL PASTEL

Esta clase de pintura es mui poco usada i bastante costosa, i por lo mismo no nos detendremos en ella, pues nuestro objeto es solo presentar el arte de pintura en forma que esté al alcance de todos.

MINIATURA

Esta pintura es la mas difícil, no solo por la finura que se necesita de pincel, sino por la falta de semejanza, pues jamas se sacan dos retratos de una persona exactamente iguales: gracias al descubrimiento de la fotografía, como ya hemos manifestado, todos podemos ser retratistas. No obstante, damos aquí unas nociones que procuraremos estén al alcance de todos.

Los colores para la miniatura se venden en cajas ya preparados, desliendo el color con el pincel mojado en agua de goma mui clara, a no ser para cosas que se quiera que saquen mucho lustre, como ropajes, coronas, etc., en cuyo caso será mas espesa.

El marfil, vitela, o lo que sea, se preparará con una mano de color bastante bajo, despues de haberlo contorneado; i este color será relativo a lo que se va a pintar, pues si es un retrato, se le dará un color de carne bajo, para que así disimule cualquier defecto. Luego se pasará a pintar delicadamente con los colores mas fuertes que le correspondan.

A nuestros ajentes en provincias.

Rogamos a nuestros ajentes se apresuren a remitir por jiro postal a la órden del Administrador de El Arte Industrial el dinero recojido, para poder así dar mejor cumplimiento a nuestros compromisos con la Imprenta en la cual se edita la obra, i conseguir ademas de este modo regularizar la marcha de dicha publicacion.

EL ADMINISTRADOR.
Santiago.—Casilla 1770.
Oficina.—Bandera 41.

Imp. Universitaria, Bandera 41.

Ajencia de Construcciones i Reparaciones

FABRICA A VAPOR

Sto. DOMINGO, 1716

® ENRIQUE ECHEVERRIA CAZZOTE № Casilla 1135

LA AJENCIA SE ENCARGA DE:

Construcciones i reparaciones de edificios i departamentos interiores.

Recibe órdenes para ejecutar en las casas trabajos de cualquier naturaleza, garantizando la buena ejecucion de estos.

LA FÁBRICA SE ENCARGA DE:

Trabajos de carpintería en jeneral.

Instalacion i traslacion de Oficinas i Casas Comerciales.

Hace muebles corrientes i de fantasía.

Compone, transforma, barniza, pinta i tapiza toda clase de muebles. Recomienda sus entablados-encerados, IMITACION PARQUETS, que por su bajo precio, duracion e hijiene, reemplazan con ventaja al mejor alfombrado.

a.

MECÁNICOS HERREROS

Calle Chacabuco, Núm. 258 - VALPARAISO - Teléfono ingles Núm. 1333 Especialistas en motores a gas, parafina i vapor

HACEMOS TODO TRABAJO DE HERRERIA I CERRAJERIA

COLOCAMOS CAÑERIAS DE GAS I AGUA RECIBIMOS TODO TRABAJO FINO

de ajuste para tornear

HACEMOS ESTANQUES, FONDOS DE FIERRO i Todo Trabajo Concerniente al Ramo

a Precios Equitativos

Nos encargamos de Instalaciones de toda clase de Maquinarias i Canerias a Vapor

PAPELERIA INGLESA

Casilla 717, Calle Condell Núm. 16 (Cerca Plaza Pinto) Teléfono 174

VALPARAISO BUONO-CORE I DUPRÉ IMPORTADORES DE

SOMMIERES Metalicos

PAPELES Pintados, Dorados i Lisos
LINOLEUM para Pisos Escalas, etc.
FELPUDOS, Arpillera, Lona
ARTICULOS para Tapiceros, Harrucadores, Carpinteros, Herreros
LANZAS para Cortinas
TRASPARENTES Automáticos todos
tamaños.

SOMMIEEES Metálicos

EJECUTAMOS:

Trabajos de pinturas artísticas de casas, iglesias, decoraciones, letreros, figuras, paisajes, estucos, refacciones de casas etc. — Trabajos de tapicería, colocacion de cortinas, trasparentes, linoleums, alfombras, menajes i mudanzas de casas.

DROGUERIA ESPANOLA

Valparaíso - 540 Victoria 540

F. BELLICIA

Establecimiento de primera clase

Importación Constante de Europa i Estados Unidos

Encuadernacion

UNIVERSITARIA

Oficina: Bandera 41 + Talleres: Gay 1765

IMPRESIONES DE

Circulares Memorandums

Recibos, guias Blocks i Sobres timbrados i en blanco Tarjetas comerciales Trabajos de lujo Maquinarias de primer órden

S. A. Garcia Valenzuela

(Propietario)

ALMACEN NACIONAL

DE

PEDRO BUSTOS 1450, MONEDA, 1450 - SANTÍAGO

Provisiones escojidas para familias. — Gran surtido en abarrotes. —Té, café i toda clase de artículos del país i estranjeros.

La Revista de los Niños

Periódico Ilustrado de Actualidades

i Lecturas Infantiles

Número Suelto, diez centavos

Suscricion: (14 números) \$ 1

Direccion: